期刊文献+

基于色彩相关直方图的粒子滤波跟踪算法 被引量:3

Tracking Algorithm Based on Color Correlogram Using Particle Filter
下载PDF
导出
摘要 提出一种基于色彩相关直方图的粒子滤波跟踪算法。该算法在粒子滤波基本框架之下,将目标色彩自相关直方图作为目标的描述特征,用于衡量不同预测状态与观测状态之间的色彩相关性。色彩相关直方图将色彩的空间相关性信息引入到目标的特征表达当中,弥补了一般色彩直方图的不足。试验表明,该算法不仅能在目标与背景颜色相近的情况下准确的跟踪到目标,而且能在目标发生旋转和部分遮挡的情况下也能保证不丢失目标。 A novel color correlogram based particle filter was proposed for an object tracking in visual surveillance. By using the color correlogram as object feature, spatial information was incorporated into object representation, which yielded a reliable likelihood description of the observation and prediction for tracking the objects accurately. The capability of the tracker to tolerate appearance changes like orientation changes, small scale changes, partial occlusions and background scene changes was demonstrated using real image sequences. Experimental evidence shows that the color correlogram is more effective than the traditional color histogram for objects tracking.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第17期5423-5426,共4页 Journal of System Simulation
基金 教育部博士学科点专项科研基金(20070286039)
关键词 色彩自相关直方图 粒子滤波 色彩信息 目标跟踪 color correlogram particle filter color cue object tracking
  • 相关文献

参考文献11

  • 1Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications [M]. USA: Artech House, 2004.
  • 2Kalman R E. A new approach to linear filtering and prediction problems [J]. Transaction of the ASME Journal of Basic Engineering (S0021-9223), 1960, 82(Series D): 35-45.
  • 3Welch G, Bishop G An introduction to the Kalman Fitler [R]// Technical Report University of North Carolina at Chapel Hill, TR 95-041, July 24, 2006: 2-15.
  • 4Salmond D, Gordon N, Smith A. A novel approach to nonlinear/non- Gaussian Bayesian state estimation [J]. IEEE Proceedings on Radar, Sonar and Navigation (S0956-375X), 1993, 40(2): 107-113.
  • 5Arulampalam M, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing (S1053-587X), 2002, 50(2): 174-188.
  • 6Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(3): 197-208.
  • 7Isard M, Blake A. Condensation--conditional density propagation for visual tracking [J]. International Journal of Computer Vision (S0920-5691), 1998, 28(1): 5-28.
  • 8Nummiaro K, Koller-Meier E, Van-Gool L. An adaptive color-based particle filter [J]. Image and Vision Computing (S0262-8856), 2003, 21(1): 99-110.
  • 9Swain M J, Ballard D H. Color Indexing [J]. International Journal of Computer Vision (S0920-5691), 1991, 7(1): 11-32.
  • 10Huang J, Ravi Kumar S, Mitrar M. Spatial Color Indexing and Applications [J]. International Journal of Computer Vision (S0920- 5691), 1999, 35(3): 245-268.

同被引文献40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部