期刊文献+

基于RLS-BP算法的复信道盲均衡技术 被引量:2

Complex Communication Channel Blind Equalization Method Based on RLS-BP Algorithm
下载PDF
导出
摘要 基于RLS-BP(Recursion Least Square-Back Propagation,简称RLS-BP)算法提出了一种新的应用于复信道的神经网络盲均衡算法。算法实现了对一个输入、输出和权值都为复数的网络的训练。网络的误差传递采用后向传播(Back Propagation,简称BP)结构,用RLS算法实现网络的训练,这样不仅加快了网络的收敛速度,而且使得均方误差也进一步减小。为了适应复信道,新算法采用常数模(Constant Modulus algorithm,称CMA)算法的代价函数实现算法对复信道的盲均衡。最后对线性复信道和非线性复信道的均衡进行了仿真,结果表明新算法有较快的收敛速度,且稳态均方误差较CMA算法和传统的神经网络盲均衡算法有大幅度的降低。 A novel blind equalization algorithm based on RLS-BP was proposed for equalizing complex communication channel The algorithm could complete to train the network whose input, output and weights were complex. The neural network used error back propagation (BP) structure. And for increasing the converge speed and decreasing the mean square error (MSE), RLS was applied to train the BP neural network. For equalizing complex channel, the cost function of the network is the same as the CMA algorithm. At last, the numerical simulations for the linear complex channel and the non-linear complex channel were completed. The results show that the proposed algorithm has faster convergence, and much lower MSE than those of BP and CMA algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第17期5553-5555,5561,共4页 Journal of System Simulation
关键词 神经网络 RLS—BP 复信道 盲均衡 算法 neural network RLS—BP complex communication channel blind equalization algorithm
  • 相关文献

参考文献6

  • 1SimonHayin.自适应滤波器原理[M].第4版.北京:电子工业出版社.2003.
  • 2肖瑛,李振兴,刘国枝,张林波.水声通信中变步长神经网络盲均衡算法研究[J].声学技术,2005,24(3):129-131. 被引量:5
  • 3M R Azimi-Sadjadi, Ren-Jean Liou. Fast Learning Process of Multilayer Neural Networks Using Recursive Least Squares Method [J]. IEEE Trans on signal processing (S1053-587X), 1992, 40(2): 446-450.
  • 4R S Scalero, Tepedelenliouglu. A Fast New Algorithm for Training Feedforward Neural Networks [J]. IEEE Trans on signal processing (S1053-587X), 1992, 40(1): 202-210.
  • 5Bilski JL, Rutkowski L. A Fast Training Algorithm for Neural Networks [J]. IEEE Trans, Circuits and Systems: Analog and Digital Signal Processing (S1057-7130), 1998, 15(6): 749-753.
  • 6王军锋,张斌,宋国乡.一种组合神经网络非线性判决反馈均衡器[J].计算机科学,2003,30(7):152-153. 被引量:2

二级参考文献12

  • 1Proakis J G. Digital communications. McGraw-Hill, NewYork,3nd Ed. ,199S.
  • 2Chen S, Gibson G J, et al. Reconstruction of binary signals using an adaptive radial-basis-function equalizer. Signal Processing,1991,22(1) :77- 93.
  • 3Cha I,Kassam S A. Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications, 1995,13(1) :122-131.
  • 4Ong S, Yon C, et al. A decision feedback recurrent neural equalizer as a infinite response filters. IEEE Trans SP,1997,45(11):2851-2858.
  • 5In G-H,Kang K-M. Performance of a hybrid decision feedback equalizer structure for CAP-based DSL system. IEEE Trans SP,2001,49(8) : 1768- 1785.
  • 6Chelowoo You,Daesik Hong. Nonlinear blind equalization schemes using complex valued multilayer feedforward neural networks [J]. IEEE Trans on Neural Network,1998,19(6): 1442-1455.
  • 7Rumlhart D E, McClelland J. Parallel distributed processing[M]. Cambridge MA:MIT Press, 1988.322-328.
  • 8Solis F J, Wets J B. Minimization by random search techniques[J]. Mathematics of Operation Research, 1981, 6:19-30.
  • 9Shalui O. New criteria for blind deconvolution of nonminimum phase system (channels)[J]. IEEE Trans, 1990,36(2) : 312-321.
  • 10Cybeako G. Approximations by superposition of a sigmoidal function[J]. Math Contr Syst Signals, 1989, 2:303-314.

共引文献5

同被引文献10

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部