期刊文献+

基于混合粒子滤波的多目标跟踪 被引量:1

Multi-target tracking based on mixtures of particle filtering
下载PDF
导出
摘要 针对可变数量的多个红外弱小目标的检测与跟踪问题,提出了基于混合概率密度模型的多目标先跟踪后检测方法,开发了一种t分布混合粒子滤波器。在混合粒子滤波器中,利用每个分量粒子滤波器的输出信息,根据序列似然比假设检验,检测每个被跟踪目标的存在性。通过估计目标在离散占据网格上的出现概率,检测新目标的出现。混合粒子滤波器使用单独的粒子滤波器独立估计每个被跟踪目标的状态,避免算法的计算量随着目标数量增加呈指数增长的问题。仿真实验证明混合粒子滤波器能够跟踪目标数量可变的弱小目标,能够同时检测目标的消失和出现。 For the problem of detecting and tracking a variable number of dim small targets in IR image sequences, a multi-target track-before-detect approach based on the mixture model of probability densities is proposed, and a mixture of t distribution particle filters (MTPF) is developed for the implementation of the proposed approach. In the mixture of particle filters, the existence of each tracked target is detected by using the sequential likelihood ratio test estimated by the output of the component particle filter. New targets are detected by the appearance probabilities in the discrete occupancy grid in the image frame. The proposed approach overcomes the curse of multi-target dimensionality by independently estimating each target state with a separate particle filter, and avoids the exponential increase in the estimation complexity. Importance resampling is carried out in each component particle filter individually. Simulation experiments illustrate that the MTPF algorithm can detect and track the variable number of dim small targets in the IR images. It can also detect the disappearance and appearance of targets simultaneously.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第8期1795-1800,共6页 Systems Engineering and Electronics
关键词 混合概率密度模型 先跟踪后检测方法 混合粒子滤波器 序列似然比检验 重要性重采样 多模态概率密度 mixture model of probability density track before detection mixture of particle filter sequential likelihood ratio test importance resampling multi-modal probability density
  • 相关文献

参考文献21

  • 1Kirubarajan T, Bar Shalom Y. Probahilistic data association techniques for target tracking in clutter[C]// Proc. of the IEEE, 2004, 92(3) :536- 557.
  • 2Liebens M, Sakiyama T, Miura J. Visual tracking of multiple persons in a heavy occluded space using person model and joint probabilistie data association[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2006:547 - 552.
  • 3Davey S J. Tracking possibly unresolved targets with PMHT[C]// IEEE Information, Decision and Control, 2007 : 47 - 52.
  • 4Streit R L. Studies in probahilistic multi-hypothesis tracking and related topics[R]. Naval Undersea Warfare Center, Publication SES - 98 - 101, Newport, RI, 1998.
  • 5Reed I, Gagliardi R, Stotts L B. Application of three-dimensional fil tering to moving target detection[J]. IEEE Trans. on Aerospace and Electronic Systems, 1988, 24(4) :327 - 335.
  • 6Singer P F. Performance analysis of a velocity filter bank[C]//SPIE Proc. of Signal and Data Processing of Small Targets, 1997, 3163:96-107.
  • 7Artes-Rodriguez A, Perez-Cruz F, Fernandez-Lorenzana R, et al. On the uncertainty in sequential hypothesis testing[C]//5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008 : 1223 - 1226.
  • 8Tonissen S M, Evans R J. Performance of dynamic programming track before detect algorithm[J].IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(4) :1440 - 1451.
  • 9Kreucher C M, Kastella K, Hero A O. Tracking multiple targets using a particle filter representation of the joint multitarget probability density[J]. Signal and Data Processing of Small Targets, Proc. of SPIE, 2003,5204:258- 269.
  • 10Kreucher C M, Kastella K, Hero A O. Multi-target tracking using the joint rnultitarget probability density[J].IEEE Trans. onAerospace and Electronic Systems, 2005 : 1396 - 1414.

同被引文献9

  • 1赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报(工学版),2005,39(11):1669-1674. 被引量:28
  • 2Kimura S, Takeuchi K, Harima Y, et al. Visual analysis in a deployable antenna experiment [ J ]. IEEE Transactions on Aero-space and Electronic System,2004,40 (1) :247 -258.
  • 3Vermaak J, Godsill S J, Perez P. Monte Carlo filtering for multitarget tracking and data association [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2005,41 ( 1 ) : 309 - 332.
  • 4Chang C, Ansari R, Khokhar A. Multiple object tracking with kernel particle filter[ C] //Conferenee on Computer Vision and Pattern Recognition. San Diego : IEEE Comp Soc ,2004:566 - 573.
  • 5Chang C, Ansari R. Kernel Particle Filter for visual tracking [ J ]. IEEE Signal Processing Letters,2005,12 ( 3 ) :242 - 245.
  • 6Tobias M, Lanterman A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar [ J]. Iet Radar Sonar and Navigation, 2008,2 (5): 351 - 365.
  • 7Vermaak J, Doucet A, Perez P. Maintaining multi-modality through mixture tracking[ C]//9th IEEE International Conference on Computer Vision. Nice France : IEEE Comp Soe ,2003 : 1110 - 1116.
  • 8Amlampalam S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking [ J ]. IEEE Transactions on Signal Processing,2006,50(2) : 174 - 188.
  • 9程亮,关富玲,张惠峰.构架式可展开天线的展开试验研究[J].空间科学学报,2010,30(1):79-84. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部