期刊文献+

初三学生关于无理数的信念的调查研究 被引量:7

Investigation of Junior Students’ Beliefs about Irrational Numbers
下载PDF
导出
摘要 从不可公度的存在性、学习无理数的必要性、无理数作为数的确定性以及无理数的不可循环性4个方面调查了初三学生关于无理数的信念.结果显示:学生对不可公度性的信念表现出与历史上数学家极大的相似性;40%多的学生缺乏对无理数学习的必要性的认识;大多数学生承认无理数是数,但近60%学生对无理数的无限不循环性缺乏坚定的信念.因此,教师在教学过程中,应注重知识发生的过程;应注重知识的来龙去脉;应注重学生对概念的理解. This paper presents a study of grade 9 students' beliefs about irrational numbers, where four aspects are considered: the existence of incommensurability, the necessity of learning irrational numbers, the certainty of irrational numbers as actual numbers and infinite non-repetition of irrational numbers. It appears that students show great parallelism of beliefs about incommensurability compared with mathematicians in history. More than forty percent of students are devoid of knowing about why they must learn irrational numbers. Most students recognize that irrational numbers are actual numbers, but nearly sixty percent of students lack strong beliefs about infinite non-repetition of irrational numbers. Therefore in the process of teaching teachers should focus on the process of knowledge generation; should focus on the ins and outs of knowledge; should focus on students' understanding of the concept.
出处 《数学教育学报》 北大核心 2009年第4期38-41,共4页 Journal of Mathematics Education
关键词 无理数 信念 不可公度 历史相似性 理解 irrational numbers belief incommensurability historical parallelism understanding
  • 相关文献

参考文献12

  • 1Arcavi A, Bruckheimer M, Ben-Zvi R. History of Mathematics for Teachers: The Case of Irrational Numbers [J]. For the Learning of Mathematics, 1987, 7(2): 18-23.
  • 2Fischbein E, Jehiam R, Cohen C. The Concept of Irrational Number in High School Students and Prospective Teachers [J]. Educational Studies in Mathematics, 1995, 29(1): 29-44.
  • 3Peled I, Hershkovitz S. Difficulties in Knowledge Integration: Revisiting Zeno's Paradox with Irrational Numbers [J]. International Journal of Mathematical Education in Science and Technology, 1999, 30(1 ): 39-46.
  • 4Zazkis R, Sirotic N. Making Sense of Irrational Numbers: Focusing on Representation [A]. In: M J Hoines, A B Fuglestad. Proceedings of 28th International Conference for Psychology of Mathematics Education [C]. Norway: Bergen, 2004.
  • 5Zazkis R. Representing Members: Prime and Irrational [J]. International Journal of Mathematical Education in Science and Technology, 2005, 36(2-3): 207-218.
  • 6Sirotic N, Zazkis R. Irrational Numbers: The Gap between Formal and Intuitive Knowledge [J]. Educational Studies in Mathematics, 2007, 65(1): 49-76.
  • 7Schoenfeld A H. Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics[A]. In: Grouws D A. Handbook of Research on Mathematics Teaching and Learning [C]. New York: Macmillan, 1992.
  • 8李士镝.PME:数学教育心理[M].上海:华东师范大学出版社,2002.
  • 9吴文俊.世界著名数学家传记[M].北京:科学出版社,2003.
  • 10Jones P S. Irrationals or Incommensurables I: Their Discovery, and a "Logical Scandal" [J]. Mathematics Teacher, 1956, 49(2): 123-127.

二级参考文献12

  • 1Gulikers I, Blom K. "A Historical Angle": A Survey of Recent Literature on the Use and Value of History in Geometrical Education [J]. Educational Studies in Mathematics, 2001, (47): 223-258.
  • 2Harper E. Ghosts of Diophantus [J]. Educational Studies in Mathematics. 1987. ( 18): 75-90.
  • 3Fauvel J, Maanen J van. History in Mathematics Education [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 4Kleiner I. Thinking the Unthinkable: The Story of Complex Numbers [J]. Mathematics Teacher, 1988, (81): 583-592.
  • 5McClenon R. B. A Contribution of Leibniz to the History of Complex Numbers [J]. American Mathematical Monthly,1923, (30): 369-374.
  • 6Smith D E. A History of Mathematics (Vol.2) [M]. Boston: Ginns, 1923.
  • 7Kline M. Mathematical Thought from Ancient to Modem Times [M]. New York: Oxford University University, 1972.
  • 8Struik D J. A Concise History of Mathematics [M]. London: G. Bell &Sons, 1954.
  • 9Kline M. Logic Versus Pedagogy [J]. American Mathematical Monthly, 1970, 77 (3): 264-282.
  • 10Polya G. Mathematical Discovery [M]. New York: John Wiley & Sons, 1962.

共引文献28

同被引文献53

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部