期刊文献+

基于关系—表征复杂性模型的问题图式等级性研究 被引量:11

Hierarchical Ordering of Schematic Knowledge Relating to Pythagorean Theorem Problems——the Explanation Based on Relational-representational Complexity Model
下载PDF
导出
摘要 问题图式的等级性可从解决问题所要求的表征关系复杂性、知识基础两方面来解释.将该解释模型用到关系结构更复杂的勾股定理问题图式的等级性研究中,一方面依据表征深度和知识基础的不同要求将问题图式分成6种形式的模版,另一方面对6个模版上的问题采用两种图式测量技术,以检验不同模版的图式水平.结果发现:(1)勾股定理问题图式具有等级性,且可以从表征深度和知识基础两方面来解释等级性的原因,但是这两项因素的解释作用需考虑问题解决者的已有水平.(2)表征深度除用表征关系最高层级数刻画之外,还与每级关系的表征难度有关,突出表现为表征关系所需的推理水平. It is revealed that schematic knowledge relating to word problems was organized hierarchically. In fact, the essence of hierarchy has been interpreted by the integration of representational complexity and knowledge base. Evidences were provided in research of Area-of-rectangle problems schema. The paper further testified the effectiveness of the explanation when it comes to more complex problems. Using the empirical study method, we have assessed schematic knowledge relating to Pythagorean theorem problems by asking 1 068th students to judge the conditions on the calculation and classify problems in terms of whether the text of each problem provided insufficient, sufficient, or irrelevant information for solution. The results suggest that schematic knowledge relating to Pythagorean theorem problems involved with the latter four templates was hierarchically organized and the hierarchical ordering could be explained from depth of representation and knowledge base. Moreover, depth of representation is not only reflected by the number of represented hierarchical relations as stated in the previous study, but also is correlated with complexity inside a relational-representation and reasoning level required in a relational-representation.
作者 张夏雨 喻平
出处 《数学教育学报》 北大核心 2009年第4期46-49,共4页 Journal of Mathematics Education
基金 全国教育科学“十一五”规划课题——回顾与反思:中国数学教育研究30年(DAA080080)
关键词 数学问题解决 图式等级 表征复杂性 mathematics problem-solving hierarchical ordering of schematic knowledge relational-representational complexity
  • 引文网络
  • 相关文献

参考文献5

二级参考文献24

  • 1辛自强,俞国良.学习不良儿童研究的社会认知取向[J].心理科学,2001,24(5):544-548. 被引量:23
  • 2Kintsch W, Greeno J G. Understanding and solving word arithmetic problems. Psychological Review, 1985, 92:109-129
  • 3Greeno J G. Some examples of cognitive task analysis with instructional implication. In: R E Snow, P Federico, W E Montagu (Eds.), Aptitude, learning, and instruction.Hillsdale, New Jersey: Lawrence Erlbaum Associates.1980, 1-21
  • 4Verschaffel L, De Corte E, Pauwels A. Solving compare problems: An eye movement test of Lewis and Mayer' s consistency hypothesis. Journal of Educational Psychology,1992, 84(1): 85-94
  • 5De Corte E, Verschaffel L. Children's solution processes in elementary arithmetic problems: Analysis and improvement.Journal of Educational Psychology, 1981, 6: 765-779
  • 6Ceci S J. On bio-ecological treatise on intellectual development. Englewood Cliffs, New Jersey: Prentice Hall,1990, 93-153
  • 7Rittle-Johnson B, Siegler R S, Alibali M W. Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 2001, 93(2): 346-362
  • 8Lewis A, Mayer R E. Students' miscomprehension of relational statements in arithmetic word problem. Journal of Educational Psychology, 1987, 79: 363~371
  • 9Commons M L, Trudeau E J, Stein S A, Richards F A. Hierarchical complexity of tasks shows the existence of developmental stages. Developmental Review, 1998, 18: 237~278
  • 10Halford G S, Wilson W H, Phillips S. Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 1998, 21(6): 803~831

共引文献52

同被引文献157

引证文献11

二级引证文献137

;
使用帮助 返回顶部