期刊文献+

de Sitter空间中具有平行平均曲率向量的完备类空子流形 被引量:3

Complete space-like submanifolds with parallel mean curvature vector in de Sitter spaces
下载PDF
导出
摘要 得到了de Sitter空间Snp+p(c)中具有平行平均曲率向量的完备类空子流形是全脐子流形的充分条件. The complete space-like submanifolds with parallel mean curvature vector in a de Sitter space Sn+pp(c) are studied,a sufficient condition for this kind of submanifolds to be totally umbilical ones is obtained.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2009年第4期23-26,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10571129)
关键词 DESITTER空间 平行平均曲率向量 类空子流形 全脐 de Sitter space parallel mean curvature vector space-like submanifold total umbilicus
  • 相关文献

参考文献11

  • 1GODDARD A J. Some remarks on the existence of space-like hypersurfaces of constant mean curvature [J]. Math Proc Cambridge Phil Soc, 1977, 82: 489-495.
  • 2AKUTAGAWA K. On space-like hypersurfaces with constant mean curvature in the de Sitter space[J]. Math Z, 1987, 196:12-19.
  • 3CHENG Qing - ming. Complete space - like submanifolds in a de Sitter space with parallel mean curvature vector[J]. Math Z, 1991, 206: 333-339.
  • 4MONTIEL S. An integral inequality of compact space- like hypersurfaces in de Sitter space and applications to the case of constant mean curvature [J].Indiana Univ Math J, 1988, 37: 909-917.
  • 5KI U H, KIM H J, NAKAGAWA H. On space-like hypersurfaces with constant mean curvature of a Lorentz space form[J]. Tokyo J Math, 1991, 14: 205-216.
  • 6OK BAEK J, CHENG Qing-ming, JIN SUH Y. Complete space- like hypersurfaces in locally symmetric Lorentz spaces[J]. J Geom Phy, 2004, 49: 231-247.
  • 7CHAVES R M B, SOUSA Jr L A M. Some applications of a Simons' type formula for complete space-like submanifolds in a semi-Riemannian space form[J]. DiffGeom Appl, 2007, 25: 419-432.
  • 8OKUMURA M. Hypersurfaces and a pinching problem on the second fundamental tensor[J]. Amer J Math, 1974, 96: 207-213.
  • 9SANTOS W. Submanifolds with parallel mean curvature vector in spheres [J]. Tohoku Math J, 1994, 411: 403-415.
  • 10YAU Shing-tung. Harmonic functions on complete Riemannian manifolds [J]. Comm Pure and Appl Math, 1975, 28: 201-228.

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部