期刊文献+

基于纵向尺度因子变化的分形插值函数误差分析 被引量:3

Error Analysis for Fractal Interpolation Functions Based on the Changes of Vertical Scaling Factors
下载PDF
导出
摘要 分形函数插值是拟合实验数据的一种新的有效的插值方法.分形插值函数是由迭代函数系产生的,迭代函数系中的纵向尺度因子对分形插值函数有重要的影响.本文定量地分析了纵向尺度因子的变化所引起的分形插值函数的误差问题,给出具体的误差解析表达式及上界估计.此外,通过数值实验,显示了分形插值函数的图像与纵向尺度因子之间的变化关系. Fractal function interpolation is a novel and effective interpolating method for fitting experimental data. Fractal interpolation functions (FIFs) are generated by iterated function systems (IFSs),and the vertical scaling factors in IFSs have important influence on FIFs. The errors of the FIFs caused by the changes of vertical scaling factors are analyzed quantitatively in this work. The concrete error expression is presented, and the upper bound of errors is estimated. In addition, by means of the numerical experiments,the change relations between vertical scaling factors and FIFs are demonstrated clearly.
作者 王宏勇 马丽
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期640-643,共4页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(60473034) 江苏省高校自然科学基金(07KJD110065)资助
关键词 分形插值函数 迭代函数系 纵向尺度因子 误差分析 fraetal interpolation function iterated function system vertical scaling factor error analysis
  • 相关文献

参考文献8

  • 1Barnsley M F. Fractal functions and interpolation [J]. Constr Approx, 1986,2 : 303-- 329.
  • 2Barnsley M F. Fractals everywhere [M]. New York: Academic Press, 1988.
  • 3Dalla L, Drakopoulos V. On the parameter identification problem in the plane and the polar fraetal interpolation functions [J]. J Approx Theory, 1999,101: 289-- 302.
  • 4Ruan H J,Sha Z, Su W Y. Counterexamples in parameter identification problem of the fraetal interpolation functions[J]. J Approx Theory, 2003,122 : 121 - 128.
  • 5陈咸存,阮火军,郭秋丽.仿射分形插值函数与纵向尺度因子[J].高校应用数学学报(A辑),2007,22(2):205-209. 被引量:7
  • 6Wang H Y,Li X J. Perturbation error analysis for fraetal interpolation functions and their moments [ J]. Appl Math Lett,2008,21:441-446.
  • 7王宏勇.一类具有双参数的迭代函数系及其吸引子[J].厦门大学学报(自然科学版),2007,46(2):157-160. 被引量:11
  • 8李信富,李小凡,张美根.垂直比例因子对分形插值精度的影响[J].黑龙江大学自然科学学报,2007,24(5):662-665. 被引量:6

二级参考文献12

  • 1王俊,邵立康,沈浮,沈建华,朱一旺,杨其雨,樊建.分形插值函数及曲线的IFS求取[J].浙江工业大学学报,2000,28(S1):19-22. 被引量:6
  • 2沙震.HOLDER PROPERTY OF FRACTAL INTERPOLATION FUNCTION[J].Analysis in Theory and Applications,1992,8(4):45-57. 被引量:3
  • 3宋万寿,杨晋吉.一种地表造型方法[J].小型微型计算机系统,1996,17(3):32-36. 被引量:6
  • 4孙博文,葛江华,张彤.分形插值函数及其应用[J].哈尔滨电工学院学报,1996,19(4):540-543. 被引量:4
  • 5Mandelbort B B.How long is the coastline of Britain? statistical self-similarity and fractal dimension[J].Science,1967,155(3775):636-638.
  • 6Barsley M F.Fractal functions and interpolation[J].Constructive Constructive,1986,(2):303-329.
  • 7Xie Heping.Fractals in rock mechanics[M].Netherlands:A A Balkema Publishers,1993:70-78.
  • 8Craig M W.IFS fractal interpolation for 2D and 3D visualization[C]//Proceedings of the 6th IEEE Visualization Conference.visualixation:[s.n.],1995:77-84.
  • 9Jeffery R P.Fractal interpolation of images and volumes[C]//In Proceedings of the 32nd Asilomar Conference on Signals,Systems,and Computers,[S.L.]:Pacific Grove CA,USA,1998:1698-1702.
  • 10龙晶凡.分形插值的条件[J].北京师范大学学报(自然科学版),2001,37(3):289-291. 被引量:6

共引文献16

同被引文献28

  • 1张灿,凃国防,刘笑宙.小波分形插值应用于遥感图像处理[J].计算机研究与发展,2005,42(2):247-251. 被引量:11
  • 2范玉红,栾元重,王永,梁青科,王国现.分形插值与传统插值相结合的方法研究[J].测绘科学,2005,30(2):76-77. 被引量:16
  • 3Barnsley M F.Fractal functions and interpolation[J].Constr Approx,1986,2:303-329.
  • 4Barnsley M F.Fractal Everywhere[M].New York:Academic Press,1988.
  • 5Mazel D S,Hayes M H.Using iterated function systems to model discrete sequences[J].IEEE Trans Signal Process,1992,40(7):1724-1734.
  • 6Zhao N.Construction and application of fractalinterpolation surfaces[J].Visual Computer,1996,12:132-146.
  • 7Dalla L.Bivariate fractal interpolation functions on grids[J].Fractals,2002,10(1):53-58.
  • 8Wang H Y.On smoothness for a class of fractal interpolation surfaces[J].Fractals,2006,14(3):223-230.
  • 9Wang H Y,Li X J.Perturbation error analysis for fractal interpolation functions and their moments[J].Appl Math Lett,2008,21:441-446.
  • 10Dalla L,Drakopoulos V.On the parameter identification problem in the plane and the polar fractal interpolation functions[J].J Approx Theory,1999,101:289-302.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部