期刊文献+

用同伦分析法求解KdV方程的孤波解 被引量:2

Solving solitary wave solutions of KdV equation with the homotopy analysis method
下载PDF
导出
摘要 利用同伦分析法求解KdV方程,得到了其孤立波的近似解析解,与精确解比较二者非常接近.研究结果说明,同伦分析法在求解非线性演化方程的孤立波解时,仍然是一种行之有效的方法. A class of solitary wave solutions of KdV equation are obtained by using the homotopy analysis method (HAM). Comparing the solutions given by the HAM with the exact ones, the result shows that they are agreement very well with each other. The results indicate that the HAM is still valid and effective for solving the solitary wave solutions of nonlinear evolution equations.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2009年第5期39-43,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10575082) 教育部科学技术研究重点项目(209128) 西北师范大学科技创新工程资助课题(NWNU-KJCXGC-03-53)
关键词 同伦分析法 KDV方程 孤波解 homotopy analysis method KdV equation solitary wave solution
  • 相关文献

参考文献18

  • 1LIAO Shi-jun. An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude[J]. Int J Non- Linear Mechanics , 2003, 38. 1173-1183.
  • 2LIAO Shi-jun, POP I. Explicit analytic solution for similarity boundary layer equations[J]. Int J Non- Linear Mechanics, 2004, 39: 271-280.
  • 3LIAO Shi-jun. On the homotopy analysis method for nonlinear problems [J]. Appl Math and Comput, 2004, 147: 499-513.
  • 4LIAO Shi-jun. An analytic approximation of the drag coefficient for the viscous flow past a sphere[J]. Int J of Non-LinearMech, 2002, 37: 1-18.
  • 5AYUB M, RASHEED A, HAYAT T. Exact flow of a third grade fluid past a porous plate using homotopy analysis method[J]. Int J Engineering Science, 2003, 41: 2091-2109.
  • 6LIAO Shi- jun. On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet [J]. J Fluid Mechanics, 2003, 4118: 189-212.
  • 7LIAO Shi-jun, CHEUNG K F. Homotopy analysis of nonlinear progressive waves in deep water [J]. Journal of Engineering Mathematics, 2003, 45(2) : 105-116.
  • 8LIAO Shi-jun. An explicit analytic solution to the Thomas - Fermi equation v Appl Math and Comput, 2003, 144: 495-506.
  • 9LIAO Shi-jun. A new analytic algorithm of Lane- Emden equation [J]. Appl Math And Comput, 2003, 142(1): 1-16.
  • 10WANG Chun, WU Yong-yan, WU Wan. Solving the nonlinear periodic wave problems with the homotopy analysis method[J]. Wave Motion, 2004, 41: 329-337.

二级参考文献37

共引文献227

同被引文献19

  • 1石玉仁,许新建,吴枝喜,汪映海,杨红娟,段文山,吕克璞.同伦分析法在求解非线性演化方程中的应用[J].物理学报,2006,55(4):1555-1560. 被引量:27
  • 2Liao S J.Beyond perturbation:Introduction to homotopy analysis method[M].Boca Raton:Chapman & Hall/CRC Press,2003.
  • 3Liao S J.Homotopy analysis method in nonlinear differential equations[M].Beijing:Springer & Higher Education Press,2012.
  • 4Liao S J,Cheung K F.Homotopy analysis of nonlinear progressive waves in deep water[J].J Eng Math,2003,45(2):105-116.
  • 5Zhao Y L,Lin Z L,Liu Z,et al.The improved homotopy analysis method for the Thomas-Fermi equation[J].App Math Comput,2012,218:8363-8369.
  • 6Wang C,Wu Y Y,Wu W.Solving the nonlinear periodic wave problems with the Homotopy analysis method[J].Wave Motion,2004,41(4):329-337.
  • 7Burger J M.A mathematical model illustrating the theory of turbulence[J].Adv Appl Math,1948,1:171-199.
  • 8Cole J D.On a quasilinear parabolic equations occurring in aerodynamics[J].Quart Appl Math,1951,9:225-236.
  • 9Hopf E.The partial differential equation ut + uux =μuxx[J].Commun Pure Appl Math,1950,3:201-230.
  • 10Varo(g)lu E,Finn W D.Space-time finite element incorporating characteristics for the Burgers' equation[J].Int J Numer Meth Eng,1980,16:171-184.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部