摘要
于2006年度在黑龙江八一农垦大学实验农场大田栽培条件下,以大豆垦农4号为试材,选用植物生长物质为2-N,N-二乙氨基乙基己酸酯(DTA)、氯化胆碱(CC)和SOD模拟物(SODM),于开花始期叶面喷施,对大豆叶片形态解剖结构和光合指标进行了研究。结果表明,各处理的叶片栅栏组织厚度及栅海比增加,栅栏组织细胞排列的紧密程度为SODM>DTA>CC>CK;各处理不同程度地增加了单个细胞的叶绿体数、单个叶绿体中的基粒片层数和淀粉粒数,降低了叶绿体中的嗜锇体数;SODM、DTA分别显著、极显著增加了叶绿体的基粒数;各处理普遍提高了生育后期叶片Chla、Chlb和Chl(a+b)含量,增加了Chlb/a比值;在较干旱条件下,与对照相比,各处理能使叶面积指数和光合势达到最大值时间提前,增加了籽粒干物质积累时期的总光合势,提高了净光合速率。
Many soybean [Glycine max (L.) Merr.] morphological and physiological regulations responding to plant growth substances have been reported. Related researches showed that plant growth substances could effectively control lodging, increase leaf area index, promote photosynthesis, reduce productive abscission and improve yield and quality in soybean production. Plant growth substances through adjusting inner hormone control soybean's whole process of growth and development, at the same time possibly affect the structure of soybean organs, including root, stem, leaf, and productive organs, on which there are a little report. Microtechnique and ultramicrotechnique have triumphantly applied in the researches on the changes of fibre texture and ultrastructure in plant caused by nutrient elements and environment factors, which provides availibility to research the effects of plant growth substances on the structure of soybean organs. The present study was carried out in an attempt to compare anatomical structure and photosynthetic characteristics of cultivar Kennong 4, treated with three plant growth substances in the field of experiments on trail farm of Heilongjiang August-First Land Reclamation University in 2006. The selected secure plant growth substances Diethyl anlinoethyl (DTA), Ckolirte chloride (Cc), and SOD simulation material (SODM), were applied by leaf-spraying at the beginning of blossom stage (R1). 30 days later, at the beginning seed stage (R5), the functional leaves were sampled to compare fibre texture and ultrastructure by microtechnique and ultramicrotechnique. Photosynthetic characteristics, such as leaf index, photosynthetic pigment content, photosynthetic potential and photosynthetic rate, were measured every 10 days after the treatments. The results indicated that the plant growth substances caused the changes of both anatomical structure of leaf and photosynthetic characteristics. Under light microscope, we found that, compared with control, DTA, CC, and SODM increased palisade tissue thickness and ratio of palisade/spongy of leaf. The tight degree of palisade tissue arrangement, was different in treatment showing the order of SODM〉 DTA〉 CC〉 CK. DTA, CC, and SODM increased the number of chloroplast single cell, granule lamella and starch grains in chloroplast, while reduced the number of osmophilic globuli in the chloroplast. SODM, DTA increased granule number in chloroplast significantly. In the investigation of photosynthetic characteristics, we found that, compared with control, DTA, SODM, and CC increased the contents of Chl a, Chl b, Chl(a+b) in leaf and the ratio of Chl b/a. DTA, SODM, and CC advanced the time to maximum leaf area index and leaf area duration (LAD), increased total LAD and photosynthetic rate during grain filling period under water stress. From above, we drew a conclusion that plant growth substances could at least partially regulate the structure of soybean organs, fibre texture and ultrastructure of soybean leaf, which is helpful to promote photosynthesis, showing the consistency between anatomical structure and physiological function.
出处
《作物学报》
CAS
CSCD
北大核心
2009年第9期1691-1697,共7页
Acta Agronomica Sinica
基金
国家科技支撑计划项目(2006BAD21B01)
黑龙江省"十一五"科技攻关项目(GA06B101-1-1)
教育部高等学校博士学科点基金联合资助项目(20070223002)资助
关键词
大豆
植物生长物质
形态解剖
光合特性
Soybean
Plant growth substances
Morphological and anatomical
Photosynthetic characteristic