期刊文献+

Diameter Preserving Surjection on Alternate Matrices 被引量:1

Diameter Preserving Surjection on Alternate Matrices
原文传递
导出
摘要 Let F be a field with |F| ≥ 3, Km be the set of all m × m (m ≥ 4) alternate matrices over F. The arithmetic distance of A, B ∈ Km is d(A, B) := rank(A - B). If d(A, B) = 2, then A and B are said to be adjacent. The diameter of Km is max{d(A, B) : A, B ∈ km}. Assume that φ : Km→Km is a map. We prove the following are equivalent: (a) φ is a diameter preserving surjection in both directions, (b) φ is both an adjacency preserving surjection and a diameter preserving map, (c) φ is a bijective map which preserves the arithmetic distance. Let F be a field with |F| ≥ 3, Km be the set of all m × m (m ≥ 4) alternate matrices over F. The arithmetic distance of A, B ∈ Km is d(A, B) := rank(A - B). If d(A, B) = 2, then A and B are said to be adjacent. The diameter of Km is max{d(A, B) : A, B ∈ km}. Assume that φ : Km→Km is a map. We prove the following are equivalent: (a) φ is a diameter preserving surjection in both directions, (b) φ is both an adjacency preserving surjection and a diameter preserving map, (c) φ is a bijective map which preserves the arithmetic distance.
作者 Li Ping HUANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第9期1517-1528,共12页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 10671026)
关键词 geometry of matrices alternate matrix arithmetic distance ADJACENCY DIAMETER geometry of matrices, alternate matrix, arithmetic distance, adjacency, diameter
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部