期刊文献+

基于改进克隆选择算法的蛋白质关联图预测 被引量:1

Protein contact map prediction based on improved clonal selection algorithm
下载PDF
导出
摘要 针对蛋白质关联图预测问题,提出一种克隆选择算法与蛋白质折叠规律相结合的预测方法,综合使用蛋白质序列疏水性质、残基的二级结构倾向、关联图总点数等信息,构造了基于限制规则的克隆选择算法适应度函数,设计了符合关联图生物学特性的变异操作。算法不需要使用额外蛋白质作为训练集,不需要从现有蛋白质数据库中提取模板,因此不受现有蛋白质结构数据的局限,可以由序列信息直接进行预测。对200个非同源蛋白质的测试验证了算法的有效性。 An improved clonal selection algorithm for protein contact map prediction is proposed. The fitness function of the algorithm is constructed by using the protein folding restrictions, such as the hydrophobicity of amino acids, the secondary structure inclination of residues, the total number of contacts in contact map, and so on. Variance operation according with the biological properties of the contact map is designed. This algorithm does not need additional proteins as the training set to extract the template; therefore it is not affected by the existing limitations of protein structure. Prediction tests for 200 non-homological proteins with different lengths are conducted and the results verify the effectiveness of the algorithm.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第5期1303-1308,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2007AA04Z114) 国家自然科学基金项目(60673099 60873146)
关键词 人工智能 蛋白质关联图 免疫算法 克隆选择算法 疏水性 artificial intelligence protein contact maps immune algorithm clonal selection algorithm amino acids hydrophobicity
  • 引文网络
  • 相关文献

参考文献9

  • 1Habibi N K, Saraee M H. Protein contact map prediction based on an ensemble learning method[C]// Proceedings of 2009 International Conference on Computer Engineering and Technology, Singapore, 2009,.
  • 2Barah Pankaj, Sinha Somdatta. Analysis of protein folds using protein contact networks[J]. Pramana-Journal of Physics, 2008, 71(2) :369-378.
  • 3Melo R C, Ribeiro C, Murray C S, et al. Finding protein-protein interaction patterns by contact map matching [J]. Genetics and Molecular Research, 2007 (4): 946-963.
  • 4Grana O, Baker D, Maccallum R M, et al. CASP6 assessment of contact prediction[J]. Proteins: Structure, Function and Bioinformatics, 2005, 61, (S7): 214-224.
  • 5郑明,刘桂霞,周春光,王晗,郑小红,李艳文.基于并行免疫遗传算法基因表达数据的动态模糊聚类[J].吉林大学学报(理学版),2009,47(1):63-68. 被引量:8
  • 6Fariselli P, Olmea O, Valencia A, et al. Prediction of contact maps with neural networks and correlated mutations[J]. Protein Eng, 2001 (14):835-843.
  • 7Hobohm U, Scharf M, Schneider R, et al. Selection of representative data sets[J]. Prot Sci, 1992 (1): 409-417.
  • 8Chou P Y, Fasman G D. Prediction of the secondary structure of proteins from their amino acid sequence [J]. Advanced Enzyme Molecular Biology, 1978, 47:145-148.
  • 9David Baker, Andrej Sali. Protein structure prediction and structural genomic[J]. Science, 2001, 294 (5540) :93-97.

二级参考文献13

  • 1郑岩,黄荣怀,战晓苏,周春光.基于遗传算法的动态模糊聚类[J].北京邮电大学学报,2005,28(1):75-78. 被引量:22
  • 2Hoppner F, Klawonn F, Kruse R, et al. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition [M]. New York: John Wiley & Sons, 1999: 17-20.
  • 3Petty C C, League M R. A Theoretical Investigation of a Parallel Genetic Algorithm [ C ]//Proceedings of 3rd Int Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann, 1989: 398405.
  • 4LUO Wen-jian, CAO Xian-bin, WANG Xu-fa. An Immune Genetic Algorithm Based on Immune Regulation [ C]// Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE Xplore, 2002: 801-806.
  • 5WANG Han, ZHOU Chun-guang, ZHENG Ming, et al. Measuring the Similarity of Co-regulated Genes by Integrating Quantity and Tendency of Gene Expression Changing [ C ]//The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE Xplore, 2008: 1896-1900.
  • 6Eisen M, De Hoon M. Cluster 3.0 Manual for Windows, Mac OS X, Linux, Unix [ EB/OL]. 2002-05. http ://bonsai. ims. u-tokyo, ac. jp/-mdehoon/software/cluster/cluster3, pdf.
  • 7Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization [ J ]. Molecular Biology of the Cell, 1998, 9 (12) : 3273-3297.
  • 8Spellman P T, Sherlock G, Zhang M Q, et al. The Tab Delimited Data for the Alpha Factor, Cdcl5, and E|utriation Time Courses of Yeast for 6000 Genes [ EB/OL]. [ 2008-03-18 ]. http ://genome-www. stanford, edu/cellcycle/data/ rawdata/combined, txt.
  • 9Spellman P T, Sherlock G, Zhang M Q, et al. The 800 Yeast Genes Which Express in the Cell Cycle [ EB/OL ]. 1998-10-13. http://genome-www.stanford, edu/cellcycle/data/rawdata/CellCycle98, xls.
  • 10Bansal M, Belcastro V, Ambesi-impiombato A, et al. How to Infer Gene Networks from Expression Profiles [ J ]. Mol Sys Biol, 2007, 3: 78-88.

共引文献7

同被引文献9

引证文献1

二级引证文献1

相关作者

;
使用帮助 返回顶部