期刊文献+

融合离群点判别的稳态检测方法及其应用 被引量:5

Steady State Identification Method Containing Outliers Detection and Its Application
下载PDF
导出
摘要 针对可能含有离群点的过程数据,提出一种融合离群点判别的稳态检测(Steady StateIdentification,SSID)方法,即基于新型3δ法则离群点判别与自适应多项式滤波(Adaptive Poly-nomial Filtering,APF)稳态检测相结合的方法。该方法首先根据历史稳态数据自适应地确定滤波窗口的长度;然后针对过程数据离群点的特点,采用提出的新型3δ法则滤除并替换窗口数据中的离群点;通过对消除离群点的窗口数据进行多项式滤波,得到反映该窗口内数据变化特征的曲线,并根据曲线的特征判断过程是否处于稳态。仿真研究与实际应用表明:融合离群点判别的稳态检测方法克服传统稳态检测方法中离群点对稳态检测结果的影响,检测结果明显优于传统的APF方法。 In this paper, a steady state identification method of containing outliers detection, i. e. , combining polynomial filtering steady state identification with the new 38 formula, is proposed for the process data containing outliers. In the proposed method, the length of filtering window is adaptively searched by means of the history data. And then, the outliers in the process data are filtered and replaced by using 38 formula. Finally, by making polynomial filtering to the present data in the window, the curve that shows the characteristic of the data is obtained. Moreover, the stability of the process is decided according to the characteristic of curve. Both simulation experiment and real application show that the proposed method performs better than traditional methods, e. g. , APF method.
作者 李昕 颜学峰
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第1期144-148,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金(20506003 20776042) 国家863项目(2007AA04Z164 2007AA04Z171)
关键词 离群点 3δ法则 自适应多项式滤波 稳态检测 outliers 3δ formula adaptive polynomial filtering steady state identification
  • 相关文献

参考文献15

  • 1Narasimhan S,Mah R S H.A composite statistical teat for detecting changes of steady state[J].AIChE Journal,1985,32(9):1409-1418.
  • 2Nabasimahn S,Chen S K,Mah R S H.Detecting changes of steady state using the mathematical theory of evidence[J].AIChE Journal,1987,33(11):1930-1932.
  • 3Cao S L,Rhinehart R R.An efficient method for on-line identification of steady state[J].Journal of Process Control,1995,5(6):363-374.
  • 4Cao S L,Rhinehart R R.Critical values for a steady-state identifier[J].Journal of Process Control,1997,7(2):149-152.
  • 5Flehmig F,Watzdorf R V,Marquardt W.Identification of trends in process measurements using the wavelet transform[J].Computer Chemical Engineering,1998 (22):491-496.
  • 6Jiang Tai-wen,Chen Bin-zhen.Application of steady state detection method based on wavelet transform[J].Computer Chemical Engineering,2003,27:569-578.
  • 7丛松波.基于优化的生产过程先进控制技术[M].北京:清华大学,1988.
  • 8李初福,陈丙珍,何小荣,邱彤,胡山鹰.用于含过失误差数据稳态检测的改进滤波法[J].清华大学学报(自然科学版),2004,44(9):1160-1162. 被引量:12
  • 9付克昌,戴连奎,吴铁军.基于多项式滤波算法的自适应稳态检测[J].化工自动化及仪表,2006,33(5):18-22. 被引量:14
  • 10裒永根,李华生.过程系统测量数据校正技术[M].北京:中国石化出版社,1996.

二级参考文献15

  • 1裴瑞凌,荣冈.炼油过程的智能工厂流程模拟仿真平台[J].化工自动化及仪表,2005,32(2):43-46. 被引量:14
  • 2盛骤 谢式千 潘承毅.概率论与数理统计 [M].北京:高等教育出版社,1989..
  • 3Narasimhan S,Mah R S H,Tamhane A C,et al.A composite statistical test fordetecting changes of steady states [J].AICHE,1986,32(1): 14091418.
  • 4Narasimhan S,Chen S K,Mah R S H.Detecting changes of steady states using the mathematical theory of evidence [J].AICHE,1987,33(1): 19301932.
  • 5从松波.基于优化的生产过程先进控制技术 [Z].北京: 清华大学,1998.CONG Songbo.Advanced Control in Process Based on Optimization [Z].Beijing: Tsinghua Univ,1998.(in Chinese)
  • 6NARASIMHAN S,MAH R S H,et al.A Composite Statistical Test for Detectiong Changes in Steady State[J].Journal of AIChE,1986,32(9),1409-1418.
  • 7NARASIMHAN S,CHEN S K,MAH R S H.Detection Changes of Steady State Using the Mathematical Theory of Evidence[J].Journal of AIChE,1987,33(11),1930-1932.
  • 8CAO S,RHINEHART R R.An Efficient Method for On-line Identification of Steady State[J].Journal of Process Control,1995,5(6):363-374.
  • 9FLEHMIG F,WATZDORF R V,MARQUARDT W.Identification of Trends in Process Measurements Using the Wavelet Transform[J].Comp Chem Eng,1998,(Sup22):491-496.
  • 10JIANG Tai-wen,CHEN Bing-zhen,et al.Application of Steadystate Detection Method Based on Wavelet Transform[J].Comp Chem Eng,2003,27:569-578.

共引文献21

同被引文献70

  • 1李初福,陈丙珍,何小荣,邱彤,胡山鹰.用于含过失误差数据稳态检测的改进滤波法[J].清华大学学报(自然科学版),2004,44(9):1160-1162. 被引量:12
  • 2毕小龙,王洪跃,司风琪,徐治皋.基于趋势提取的稳态检测方法[J].动力工程,2006,26(4):503-506. 被引量:17
  • 3付克昌,戴连奎,吴铁军.基于多项式滤波算法的自适应稳态检测[J].化工自动化及仪表,2006,33(5):18-22. 被引量:14
  • 4刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 5Kuebu D R,Davidson H.Computer control Ⅱ:Mathematics of control[J].Chemical Engineering Progress,1961,57(6):44-47.
  • 6Alhaj-Dibo M,Maquin D,Ragot J.Data reconciliation:A robust approach using a contaminated distribution[J].Control Engineering Practice,2008,16(2):159-170.
  • 7Ozyurt D B,Pike R W.Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes[J].Computers and Chemical Engineering,2004,28(3):381-402.
  • 8Khademi M H,Rahimpour M R,Jahanmiri A.Simulation and optimization of a six-effect evaporator in a desalination process[J].Chemical Engineering and Processing:Process Intensification,2009,48(1):339-347.
  • 9Woo S H,Jeon C O,Yun Y S,et al.On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant[J].Journal of Hazardous Materials,2009,161(1):538-544.
  • 10Jr Gates G H,Merkle L D,Lamont G B,et al.Simple genetic algorithm parameter selection for protein structure prediction[C] //Proceedings of the IEEE Conference on Evolutionary Computation.Piscataway,N J,USA:IEEE,1995:620-624.

引证文献5

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部