期刊文献+

一种基于松弛条件的改进模糊线性鉴别分析算法 被引量:1

Improved Fuzzy Discriminant Analysis Algorithm Based on the Relaxed Condition
下载PDF
导出
摘要 对模糊线性鉴别分析算法进行了本质研究。通过采用模糊k近邻(FKNN)方法得到相应的样本分布隶属度信息,同时考虑到离群样本对整个分类结果的不利影响,提出了一种松弛的归一化条件,将每一个样本的隶属度根据它对散布矩阵重定义所做的贡献按照松弛条件融入到特征抽取的过程中,从而得到完整有效的模糊样本特征向量集。该算法同传统模糊线性鉴别分析方法相比有效地解决了小样本和离群样本问题,在ORL和NUST603人脸数据库上的实验结果验证了它的有效性。 A study was made on the essence of fuzzy Fisher discriminant analysis (FLDA) algorithm in this paper. A reformative FLDA algorithm based on the fuzzy k-nearest neighbor (FKNN) was implemented to achieve the distribution information of every original sample represented with fuzzy membership degree and was incorporated into the redefinition of the scatter matrices. Furthermore, considering the fact that the outlier samples have some adverse influence to the classification result, a relaxed normalized condition in the fuzzy membership degrees was proposed simultaneously, therefore, the limitation from the outlier samples was overcome. Unlike the conventional FLDA algorithm, the proposed method computes its discriminant vectors with fuzzy membership degree from every training sample, which is theoretically effective to address the small size sample and outlier samples problems. Extensive experimental studies conducted on the ORL and NUST603 face images show the effectiveness of the proposed algorithrn.
出处 《计算机科学》 CSCD 北大核心 2009年第9期178-181,共4页 Computer Science
基金 863高技术研究发展计划(2006AA01Z119) 国家自然科学基金(60632050 60503026 60572034)资助
关键词 模糊线性鉴别分析 特征抽取 小样本问题 离群样本 人脸识别 Fuzzy linear discriminant analysis, Feature extraction, Small size sample problem, Outlier samples, Face recognition
  • 相关文献

参考文献14

  • 1段鸿,程义民,王以孝,蔡尚书.基于Kanade-Lucas-Tomasi算法的人脸特征点跟踪方法[J].计算机辅助设计与图形学学报,2004,16(3):279-283. 被引量:24
  • 2曲延锋,李卫军,徐健,王守觉.复杂背景下多姿态人脸快速检测算法[J].计算机辅助设计与图形学学报,2004,16(1):45-50. 被引量:17
  • 3王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 4武宇文,刘宏,查红彬.基于特征分组加权聚类的表情识别[J].计算机辅助设计与图形学学报,2005,17(11):2394-2401. 被引量:11
  • 5Kirby M,Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Transactions on Pat tern Analysis and Machine Intelligence,1990,12(1):103-108.
  • 6Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 7Belhumeur P N,Hespanha J P,Kriengmanl D J.Eigenfaces vs Fisherfaces:Recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 8Swets D L,Weng J.Using discriminant eigenfeatures for image retrieval[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
  • 9Kwak K C,Pedrycz W.Face recognition using a fuzzy fisherface classifier[J].Pattern Recognition 2005,38(10):1717-1732.
  • 10Keller J M,Gray M R,Givens J A.A fuzzy k-nearest neighbor algorithm[J].IEEE Transactions on Systems,Man and Cybernetics 1985,15(4):580-585.

二级参考文献51

  • 1Kouadio C, et al. Real-time facial animation based upon a bank of 3D facial expressions [A]. In: Proceedings of IEEE Conference Computer Animation98, Philadelphia, 1998. 128 -136.
  • 2Demetri Terzopoulos, Keith Waters. Analysis and synthesis of facial image sequences using physical and anatomical models [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(6): 569-579.
  • 3Fabrice Bourel, Chibelushi Claude C, Low Adrian A. Robust facial feature tracking [A]. In: Proceedings of the llth British Machine Vision Conference, Bristol, UK, 2000, 1:232-241.
  • 4Shi J, Tomasi C. Good features to track [A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 1994. 593-600.
  • 5Carlo Tomasi, Takeo Kanade. Detection and tracking of point features [R]. Pittsburgh, Carnegie Mellon University, CMU-C.S-91-132, 1991.
  • 6Calder A J, Duncan R, Young A W, et al. Caricaturing facial expressions[J]. Cognition, 2000, 76(2): 105~146.
  • 7Calder A J, Burton A M, Miller P, et al. A principal component analysis of facial expressions[J]. Vision Research, 2001, 41(9): 1179~1208.
  • 8Fasel B, Luettin J. Automatic facial expression analysis: A survey[J]. Pattern Recognition, 2003, 36(1): 259~275.
  • 9Kobayashi H, Hara F. The recognition of basic facial expressions by neural network[A]. In: Proceedings of IEEE International Joint Conference on Neural Networks, Seattle, 1991. 460~466.
  • 10Ralescu A, Iwamoto H. Recognition of and reasoning about facial expressions using fuzzy logic[A]. In: Proceedings of the 2nd IEEE International Workshop on Robot and Human Communication, Wako, 1993. 259~264.

共引文献54

同被引文献21

  • 1王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:95
  • 2Yang J, Frangi A F, Yang J Y, et al. KPCA plus LDA : a complete kernel Fisher discriminant framework for feature extraction and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2) : 230-44.
  • 3Yang J, Yang J Y. Why can LDA be performed in PCA transformed space. [ J ]. Pattern Recognition, 2003, 36 (2) : 563- 566.
  • 4Song X N, Yang J Y, Wu X J, et al. An optimal symmetrical null space criterion of fisher discriminant for feature extraction and recognition [J]. Soft Computing, 2011, 15(2) : 281-293.
  • 5Yu S X, Shi J. Segmentation given partial grouping constraints [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):173-183.
  • 6Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means clustering with background knowledge [ C ]// Brodley C E, Danyluk A P, eds. Proc. of the 18th Int' I Conf. on Machine Learning. Williamstown, Australia: Morgan Kaufmann Publishers, 2001: 577-584.
  • 7Hertz T, Shental N, Bar-Hillel A, et al. Enhancing image and video retrieval: Learning via equivalence constraint [ C ]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison, USA: IEEE Computer Society, 2003, 668-674.
  • 8Klein D, Kamvar S D, Manning C D. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering [ C ]//Sammut C, Hoffmann A G, eds. Proc. of the 19th Int' 1 Conf. on Machine Learning. Sydney, Australia: Morgan Kaufmann Publishers, 2002. 307-314.
  • 9Cho H W, Kim S B, Jeong M, et al. Genetic algorithm-based feature selection in high-resolution NMR spectra [ J ]. Expert Systems with Applications, 2008, 35 ( 3 ) : 967-975.
  • 10Davis R A, Charlton A J, Oehlschlager S, et al. Novel feature selection method for genetic programming using metabolomic H1 NMR data [ J ]. Chemometrics and Intelligent Laboratory Systems, 2006, 81(1): 50-59.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部