期刊文献+

基于Agent的人工股票市场构建及其仿真研究 被引量:2

The Constructing of Agent-based Stock Market and Its Studying of Stimulation
下载PDF
导出
摘要 基于行为金融学和市场微观结构理论的部分研究成果,建立了一个基于Agent的人工股票市场,这在人工股票市场建模领域是全新的尝试。在文中构建的人工股票市场基础上,揭示了市场的信息传递原理,回答了在怎样的条件下市场可以达到弱势有效,同时,揭示了收益率分布尖峰厚尾的原因与其与市场效率的关系,指出了各类交易商在市场中占优的条件。在此基础上,本文将文中模型与中国的股票市场进行了类比,提出完善我国股市的三条建议。 Based on some results on behavior finance and market microstructure theory,an agent-based stock market has been constructed in the new way. Some experiments have been done on this stock market, through which the principle of information delivered on the stock market is explained. What's more, this paper also tells how stock market can be weak-form EMH,how its distribution function of profits can be spike and heavy tails, and how some agents beat others. In conclusion, this paper compares the agent-based stock market with the real stock market of China and gives some suggestions.
作者 李永立
出处 《价值工程》 2009年第9期147-154,共8页 Value Engineering
基金 复旦大学"挑战杯"科技创新项目资助(20082017)
关键词 人工股票市场 计算机仿真 行为金融学 市场微观结构理论 市场有效性 agent-based stock market computer stimulation behavior finance market microstructure theory EMH
  • 相关文献

参考文献17

  • 1Holland J.Adaption in Natural and Artificial Systems:An Introductory Analysis with Application to Biology,Control and Artificial Intelligence[M].2nd Edition.Cambridge:MIT Press/Bradford Books,1992.
  • 2S Sunder.Market as Artifact Aggregate Efficiency from Zero Intelligence Traders[J]. MIT Press,2004.
  • 3S Cincotti,S M Focardi,M Marchesi,M.Raberto.Who wins? study of long-ran trader survival in an artificial stock market,Physica A 324(1-2)(2003)227-233.
  • 4Bottszzi G,Dosi G,Rebesco I.Institutional Architectures and Behavioral Econologies in the Dynamics of Financial Markets[R]S.Anna School of Advanced Studies,2003.
  • 5Westerhoff F.Central Bank Intervention and Feedback Traders[J].International Financial Market,Institutions,and Money,2003 (13):419-427.
  • 6刘晓光,刘晓峰.基于Agent的股票交易模拟及应用[J].计算机工程与应用,2004,40(21):220-222. 被引量:12
  • 7M Raberto,S Cincotti,S Focardi,M Marchesi.Traders' longrun wealth in an artificial financial market,Computational Economics 22(2-3) (2003):255-272.
  • 8Chen S H,Yeh C.Evolving Traders and the Business School with Genetic Prsgramming:A New Architecture of Agent2based Artificial Stock Market[J].Journal of Economic Dynamics and Control,2001,(25):363-394.
  • 9Chen Shu-Heng,Yeh Chia-Hsuan.Evolving traders and the business school with genetic programming:A new architecture of the Agent-based artificial stock market[J].Journal of Economic Dynamics&Control,2001,(25):363-393.
  • 10Kendall G,Su Y.The Coevolution of Trading Strategies in A Multi-agent Based Simulated Stock Market Through the Integration of Individual Learning and Social Learning[J],Evolutionsry Computation,2003,(4):2298-2305.

二级参考文献20

  • 1俞乔.市场有效、周期异常与股价波动——对上海、深圳股票市场的实证分析[J].经济研究,1994,29(9):43-50. 被引量:297
  • 2吴世农.我国证券市场效率的分析[J].经济研究,1996,31(4):13-19. 被引量:317
  • 3Goodhart C A E,M O Hara. High Frequency Data in Financial Markets:Issues and applications. Working Paper,London school of economics,1995
  • 4Lo A W,C MacKinlay.Stock Prices Do Not Follow Random Walks:Evidence From a Simple Specification Test[J].Review of Financial studies, 1988; 1:41~66
  • 5Brock W,J Lakonishok,B LeBaron. Simple Technical Trading Rules and the Stochastic Properties of Stock Returns. SFI working paper 91-01-006,1991
  • 6Arthur W B,J H Holland,B LeBaron et al.Asset Pricing under Endogenous Expectations in an Artificial Stock Market[J].Economic Notes,1997; 26:297~330
  • 7Blake LeBaron. A Builder's Guide to Agent Based Financial Markets[J].Quantitative Finance,2001; (1) :254~261
  • 8http:∥jade.cselt.it/
  • 9Klemperer P D.Auction Theory:A Guide to the Literature[J].Journal of Economic Surveys, 1999; 13 (3): 227~286
  • 10Erev I,Roth A E.Predicting How People Play Games with Unique,Mixed-Strategy Equilibria[J].American Economics Review, 1998;88:848~871

共引文献42

同被引文献27

  • 1Li Yong-li,Yuan Wen-juan,Wang Kun-sheng.Improvement of risk measure and its application to the risk management[C].Melboume: Proceedings of International Conference on Management Scienceand Engineering,2010:1284-1289.
  • 2Manuele Bicego.Component-based discriminative classification for hidden Markov models[J].Pattem Recognition,2009,42(11):2637-2648.
  • 3Hassan S Bakouch.Time series analysis[J].Joumal of the Royal Statistical Society:Series A (Statistics in Society),2009,172(1): 283-297.
  • 4Nunzio Cappuccio,Diego Lubian.The fragility of the KPSS sta- tionarity test [J]. Statistical Methods and Applications, 2010,19 (2):237-253.
  • 5Fredric M Ham, Ivica Kostanic. Principles of Neurocomputing for science and engineering[M].McGraw-Hill,2009:55-79.
  • 6Hikmet Esen.Artificial neural network and wavelet neural net- work approaches for modelling of a solar air heater[J].Expert Systems with Applications,2009,36(8): 11240-11248.
  • 7贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 8周世昊,林苍祥,倪衍森.基于遗传算法和神经网络的新股上市价格预测法[J].计算机工程,2007,33(22):9-11. 被引量:12
  • 9Ramazan Gen?ay,Faruk Sel?uk,Abdurrahman Ulugülya?ci.High volatility, thick tails and extreme value theory in value-at-risk estimation[J].Insurance Mathematics and Economics.2003(2)
  • 10Siwei Cheng,Yanhui Liu,Shouyang Wang.Progress in risk measurement[].Adv Model Optim.2004

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部