摘要
通过对人发样品中22种元素含量的数据进行变量扩维及压缩筛选处理,选出了影响性别判断较显著的变量,用PLS法处理这些变量组成的数据,得到男性与女性分类清晰的二维判别图及预报模型,并根据所建立的预报模型及人发微量元素的含量判别人的性别,准确率为81%.
The data of 22 trace elements concentrations in human hair samples were obtained by ICP AES and GFAAS. The variables which have significant influence on discriminating the sex are selected through the treatment of the concentration data by the variable dimension expansion and the variable selection methods. The discrimination plane figure with the good classification is obtained through the treatment of the data with selected variables by PLS method. The prediction models are built and used to distinguish the human sex according to the element concentrations data in human hair. The accuracy of the prediction is 81%.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
1998年第7期1054-1056,共3页
Chemical Journal of Chinese Universities
基金
国家教育委员会留学回国人员科研启动费
福建省自然科学基金