期刊文献+

酉K_1-群的稳定性

Stability for Unitary K_1-Groups
下载PDF
导出
摘要 利用E ichler变换而非传统的矩阵,证明了当nΛS(A)+1时,典范映射U2n(A,Λ)/EU2n(A,Λ)→U2(n+1)(A,Λ)/EU2(n+1)(A,Λ)是同构. By using Eichler transvection instead of the traditional matrix transvection, it is proved that the stabilization map U2n(A,A)/EU2n(A,∧)→%U2(n+1)(A,∧) is an isomorphism whenever n≤∧S(A) + 1.
出处 《洛阳师范学院学报》 2009年第5期11-13,共3页 Journal of Luoyang Normal University
关键词 Λ-稳定秩 Eichler变换 稳定性 ∧-stable range condition Eichler transvection stability
  • 相关文献

参考文献5

  • 1Bak A,Petrov V,Tang G P.Stability for Quadratic K1[J].K-Theory,2003,30:1 -11.
  • 2Hahn A J,O'Meara O T.The Classical Groups and KTheory[M].Grundlehren der Mathematischen Wissenschaften 291,Springer,1989.
  • 3Vaserstein L N.Stabilization of unitary and orthogonal groups over a ring with involution[J],(Russian) Mat.Sb.(N.S.),81:123(1970),328-351.
  • 4Knus M A.Quadratic and Hermitian Forms over Rings[M].Grundlehren der Mathematischen Wissenschaften 294,Springer,1991.
  • 5唐国平.Λ-稳定秩下的酉K_1-群[J].数学年刊(A辑),2004,25(2):171-178. 被引量:11

二级参考文献7

  • 1Bak,A.& Tang,G.P.,Stability for Hermitian K1 [J],J.Pure Appl.Algebra,150:2(2000),109-121.
  • 2Knus,M.A.,Quadratic and Hermitian Forms over Rings [M],Grundlehren der Mathematischen Wissenschaften 294,Springer,1991.
  • 3Hahn,A.J.& O'Meara,O.T.,The Classical Groups and K-Theory [M],Grundlehrender Mathematischen Wissenschaften 291,Springer,1989.
  • 4Magurn,B.A.,van der Kallen,W.& Vaserstein,L.N.,Absolute stable rank and Wittcancellation for noncommutative rings [J],Invent.Math.,91:3(1988),525-542.
  • 5Vaserstein,L.N.,Stabilization of unitary and orthogonal groups over a ring with involution [J],(Russian) Mat.Sb.(N.S.),81:123(1970),328-351.
  • 6Mustafa-Zade,N.M.,On epimorphic stability of a unitary K2-functor [J],UspekhiMat.Nauk,35(1980),165-166 [English translation:Russian Math.Surveys,35(1980),99 100].
  • 7Kolster,M.,Surjective stability for unitary K-groups [R],Preprint,1975.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部