摘要
本文给出了用算子Dλf(z)=z(1-z)λ+1*f(z)判别函数为单叶函数的两条判别法则,其中f(z)=z+∑∞k=2akzk,实数λ>-1,符号*为Hadamard卷积,并讨论了两类算子Dλ与Dn间的关系,这里算子Dn定义为D0f(z)=f(z),D1f(z)=Df(z)=zf′(z),Dnf(z)=D(Dn-1f(z)),n∈N.
This paper demonstrate two discriminant rules of functions being univalent, with operatorf(z)=z+x∞∑k=2akzk,where Dλf(z)=z/(1-z)λ+1*f(z)real number λ 〉 - 1, the symbol * refers to convolution. This paper also discusses the relations between two kinds of operators Dλ and Dn, and here Dn is defined as D0f(z)=f(z)=Df(z)=zf'(z),Dnf(z)=D(Dn-1f(z)),n∈N.
出处
《洛阳师范学院学报》
2009年第5期16-19,共4页
Journal of Luoyang Normal University
关键词
单叶函数
从属
微分算子
univalent functions
subordination
differential operator