期刊文献+

相对可数紧的一些性质(英文) 被引量:2

Some Properties on Relatively Countable Compactness
下载PDF
导出
摘要 在本文中,我们主要研究了相对可数紧的一些性质,利用X上的局部有限族描述了相对可数紧性质,同时探究了相对可数紧性质与相对序列紧性质之间的关系. In this paper, we mainly study some properties on relatively countable compactness. We give some characterizations of relatively countable compactness in terms of collections of subsets of X which are locally finite on X and investigate the relations between relatively countable compactness and relatively sequential compactness.
作者 张国芳
出处 《吉林师范大学学报(自然科学版)》 2009年第3期58-60,共3页 Journal of Jilin Normal University:Natural Science Edition
关键词 相对可数紧性质 相对序列紧性质 聚点 Relatively countable compactness Relatively sequential compactness An accumulation point
  • 相关文献

参考文献5

  • 1Arhangel'akii A.V.,From classic topological invariant to relative topological properties,Sci.Math.Japon,55 No.1 (2002),153-201.
  • 2Arhangel' skii A.V.and Ganedi H.M.M.,Beginning of the Theory of Relative of the Theory of Relative Topological,General Topology:Space and Mapping.MGU,Moscow,(1989),3-48 (in Russian).
  • 3Engelking R.,General Topology.Sigma Series in Pare Mathematics,Heldermann,Berlin,revised,1989.
  • 4Grabner E.M.,Grabnor G.C.,Miyazaki K.,On properties of relative metacompactness and paracompactness type,Topology Proc,25 (2000),145-177.
  • 5Vaughan J.E.,Countably compact and sequentially compact spaces,Handbook of Set-theoretic Topology,North-Holland,New York,(1984),569-602.

同被引文献19

  • 1张国芳.关于相对对称度量和1-度量的研究[J].吉林师范大学学报(自然科学版),2007,28(1):1-3. 被引量:1
  • 2A. V. Arhangel' skii, From classic topological invariant to relative topological properties [ J ]. Sci. Math. Japon. 2002,55 ( 1 ) : 153 - 201.
  • 3A. V. Arhangel ' skii, Location type properties: relative strong pseudocompactness[ J ]. Trudy Matem. Inst. RAN, 1992,193 : 28 ~ 30.
  • 4A. V. Arhangel' skii and H. M. M. Genedi. Beginning of the Theory of Relative TopologicalProperties. Geheral Topology: Space and Mapping. MGU, Moscow, 1989(in Russian).
  • 5Engelking R., General Topology. Sigma Series in Pure Mathematics[ M]. Heldermann, Berlin, revised, 1989.
  • 6E. M. Grabner, G. C. Grabnor, K. Miyazaki, On properties of relative metacompactness and paracompactness type[ J ]. Topology Proc., 2000,25 : 145 ~ 177.
  • 7Vaughan J. E., Countably compact and sequentially compact spaces[ M]. Handbook of Set-theoretic Topology, North-Holland, New York, 1984.
  • 8Loinae Lj. D., Some relative covering properties[J]. Mat. Vesnik, 1992,44:33 ~ 44.
  • 9Mrowska S. ,On completely regular spaces[J] .Fund. Math, 1954,41 : 105 ~ 106.
  • 10Qu Z.and Yasui Y. ,Relatively subparacompaet spaces[J]. Sci. Math. Japon,2001,54(2) :281 - 287.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部