摘要
研究了两端支承圆柱体的稳定性和失稳振动。在方程中忽略了轴向运动和横向运动的高阶微量,从而进一步简化了两端支承圆柱体的运动微分方程。对六阶离散化后的方程进行了数值模拟,发现系统在u=14.28时发生颤振失稳,发生颤振失稳的平衡位置为q1=0.0946,与Y.Modarres-Sadeghi等人于2005年得到的结果基本吻合,说明本文的简化方法是合理的。
The dynamics of the flexible cylinder supported at both In axial flow is studied in this paper The additional longitudinal force arising from the transverse motion of the cylinder is considered as a nonlinear term in the equation and ignore high - level small measure . the non - dimensional equation of motion was discretized with six - mode Rize - Galerkind method , numerical value Simulation with matlab . it is found that the system would develop flutter at u = 14.28 ,the position of the non - zero equilibria is q1 =0.0946. The present result is in agreement with the result obtained by Modarres - sadeghi in 2005.
出处
《沈阳航空工业学院学报》
2009年第4期19-23,共5页
Journal of Shenyang Institute of Aeronautical Engineering
基金
国家自然科学基金(项目编号:10872135)
关键词
轴向流
圆柱体
颤振
横向位移
axial flow
cylinder
stability
flutter
divergence