期刊文献+

P2P环境下基于推荐的信誉计算方法

A reputation evaluation algorithm based on recommendation in P2P environment
下载PDF
导出
摘要 通过节点间信誉评价的相似度和信息熵的计算,提高了推荐信誉的可用性,降低了共谋推荐行为对间接信誉合成的消极影响。通过Einstein算子将多个推荐信誉合成间接信誉,体现了信誉评估的模糊性的特点。实验结果表明,该方法可以增强推荐信誉的可用性,在一定程度上减少共谋推荐对信誉真实性造成的影响。 Through computing the semantic relevancy of reputation evaluation among peers and the information entropy, the availability of recommendation reputation is improved, and the negative effect that the collusive recommendation has on the indirect reputation composition is reduced. The aggregation of recommenders'reputation to an object is by Einstein arithmetic operators, which reflects the fuzzy characteristic of reputation. The experiment results show that the method could enhance the availability of recommendation reputation, and reduce the influence of the collusive recommending on the authenticity of reputation to some extent.
出处 《沈阳航空工业学院学报》 2009年第4期38-41,共4页 Journal of Shenyang Institute of Aeronautical Engineering
关键词 P2P文件共享 信任管理 相似度 共谋 P2P file sharing system trust management semantic relevancy collusion
  • 相关文献

参考文献10

二级参考文献44

  • 1王学慧,张磊,黄柯棣.基于PDES乐观时间管理的周期时间桶算法研究[J].计算机工程与科学,2005,27(8):70-72. 被引量:1
  • 2石祥滨,孟令强,邢元胜,佟艳阳,王岩.一种基于N-Tree的可预测兴趣管理机制[J].小型微型计算机系统,2006,27(12):2206-2211. 被引量:11
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.

共引文献675

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部