期刊文献+

基于贝叶斯估计的双树复小波图像降噪技术 被引量:4

The image denoising method based on dual tree complex wavelet transform and Bayesian estimation
下载PDF
导出
摘要 提出双树复小波变换和贝叶斯估计确定阈值相结合的图像去噪方法.与常用的离散小波变换相比,该方法具有逼近的平移不变性和更多的方向选择性,有利于特征的跟踪、定位和保留.结合贝叶斯估计技术和自适应分布参数确定方法,给出了有效的图像去噪算法.结果表明,该方法去除噪声彻底,边界、纹理等特征保留较好. It is proposed that the image denoising method based on dual tree complex wavelet transform and Bayesian estimation. Compared with the traditional discrete wavelet transform, the dual tree complex wavelet transform has the properties of approximate shift invariance and more directionality. These properties are good for tracing, locating and preserving image features. Combined with statistical based Bayesian estimation and adaptive distribution parameter estimation, an effective denoising algorithm is gained. The experiment results show that the method not only removes most noises, but also preserves features better.
出处 《西安工程大学学报》 CAS 2009年第3期75-79,98,共6页 Journal of Xi’an Polytechnic University
关键词 离散小波变换 双树复小波变换 贝叶斯估计 图像去噪 discrete wavelet transform dual-tree complex wavelet transform Bayesian estimation image denoising
  • 相关文献

参考文献8

  • 1胡海平.小波图像压缩编码与小波图像与之降噪的研究[M].上海:上海大学出版社,2002.
  • 2KINGSBURY N G. Image processing with complex wavelets [ J ]. Philosopkical Transactions: Mathematical, Physical and Engineering Sciences, 1999,357 (9) : 2 543 -2 560.
  • 3KINGSBURY N G. Shift invariant properties of the dual-tree complex wavelet transform[ C]//Proc ICASSP 99. USA: Phoenix, 1999:16-19.
  • 4KINGSBURY N G. The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters C ]//Proc 8thIEEE DSP Workshop. USA: Utah, 1998: 86-89.
  • 5KINGSBURY N G. Complex wavelets for shift invariant analysis and filtering of signals [ J ]. Appl Comp Harmonic Anal, 2000,10(3) : 234-253.
  • 6KINGSBURY N G. The dual tree complex wavelet transform: a new efficient tool for image restoration and enhancement [ C ]//European Signal Processing Conf 98. Island of Rhodes, GREECE: EVRASIP, 1998:319-322.
  • 7CHANG S G, YU Bin, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Trans Image Processing, 2000,9(9) :1 532-1 546.
  • 8DONOHO D L, JONHNSTONE I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994,81:425-455.

共引文献1

同被引文献32

  • 1叶文珺,郑鸯,耿新民.基于遗传算法的异构分布式并行分形图像压缩算法[J].计算机应用,2006,26(4):793-796. 被引量:5
  • 2王小侠,戴芳,赵凤群.基于小波变换的分形特征图像编码[J].纺织高校基础科学学报,2006,19(1):76-79. 被引量:1
  • 3BARNSLEY M F,SLOAN A D.A better way to compress images[J].BYTE,1988,13(1):215-223.
  • 4JACQUIN A E.A novel fractal block-coding technique for digital image[C]//Proc ICASSP IEEE International Conference on ASSP,USA,1990:2 225-2 228.
  • 5FISHER Y.Fractal image compression:Theory and Application[M].New York:Spring Verlag,1995.
  • 6DAVIS G.A Wavelet-Based analysis of fractal image compression[J].IEEE Transactions on image processing,1998,7(2):141-154.
  • 7MONRO D M,WOOLLEY S J.Fractal image compress without searching[C]//Proc IEEE ICASSP'94,Australia,1994:557-560.
  • 8ZHANG Y,PO L M.Speeding up fractal image encoding by wavelet-based block classification[J].Electronics Letters,1996,32(23):2 140-2 141.
  • 9MALLAT S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans Pattern Anal Machine Intell,1989,11:674-693.
  • 10Mehdi N,Hossein N.Image denoising in the wavelet domain using a new adaptive threholding function[J].Neurocomputing, 2009,72: 1012-1025.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部