期刊文献+

自适应Huffman树组密钥更新方案 被引量:2

Adaptive Huffman tree scheme for multicast rekeying
原文传递
导出
摘要 利用Huffman树来实现组密钥更新具有平均更新开销最小的优势.针对现有方案中Huffman树只能静态创建,而无法动态调整的问题,提出了一种根据用户进出组的频率而动态调整的自适应Huffman树算法;同时,提出了自适应调整过程中的节点位置交换密钥更新算法,并给出了用户加入或离开时的组密钥更新算法.分析表明,该方案能保证组密钥更新的安全性,当用户进出组时,树的形状随着用户的进出而动态变化,并能始终保持Huffman树用户平均密钥更新代价最小. Huffman key tree scheme has least average cost for multicast rekeying, but Huffman key tree can't be adjusted dynamically and be statically established in current scheme. An adaptive Huffman key tree scheme for multicast but rekeying was proposed in which the structure of Huffman key tree could be adjusted adaptively with the frequency of users joining in or leaving from multicast group before now, then rekeying arithmetic for node position exchange and member join or leave was proposed respectively. The analysis proved that the scheme can provide the security of multicast rekeying, as well as can ensure that the average cost of rekeying be minimum even when adjusting Huffman key tree dynamically.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期33-36,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60572049)
关键词 组密钥更新 HUFFMAN树 节点位置交换 钿权路径长度 平均密钥更新代价 multicast rekeying Huffman tree node position exchange weighted path length average rekeying cost
  • 相关文献

参考文献9

  • 1Yu W, Sun Y, Liu K J. Minimization of rekeying cost for contributory group communications[C]// Global Telecommunications Conference 2005. Missouri: IEEE, 2005:1 716-1 720.
  • 2Wong C K, Gouda M, Lam S S. Secure group communications using key graphs[J]. IEEE ACM Trans on Networking, 2000, 8(1):16-30.
  • 3Sherman A T, McGrew D A. Key establishment in large dynamic groups using one-way function trees [J]. IEEE Trans on Software Engineering, 2003, 29 (5) :444-458.
  • 4屈劲,葛建华,蒋铭.安全组播的Huffman层次密钥管理[J].软件学报,2003,14(1):151-156. 被引量:8
  • 5祝烈煌,曹元大.基于Huffman单向函数树的组播密钥更新协议[J].北京理工大学学报,2004,24(6):524-527. 被引量:3
  • 6Sun D, Huang T S, Sun F X. DS-HOFKCT: a multicast re-keying protocol based on huffman one-way function key chain tree [C]//IEEE WCNM. Wuhan: IEEE, 2005: 1 132-1 135.
  • 7Lee P C, Lui J C, Yau D K. Distributed collaborative key agreement protocols for dynamic peer groups [C]//IEEE ICNP. Paris: IEEE, 2002:322-331.
  • 8许勇,凌龙,顾冠群.可靠可缩放安全多播密钥更新实现研究[J].计算机研究与发展,2004,41(6):934-939. 被引量:6
  • 9Banerjee S, Bhattacharjee B. Scalable secure group communication over IP multicast[J]. JSAC Special Issue on Network Support for Group Communication, 2002, 20(8) :156-163.

二级参考文献19

  • 1周炯磐 丁小明.信源编码理论[M].北京:人民邮电出版社,1996..
  • 2Canetti R, Garay J, Itkis G. Multicast security: A taxonomy and efficient reconstructions[Z]. IEEE Infocom'99, New York, 1999.
  • 3Fiat A, Naor M. Broadcast encryption[Z]. Advances in Cryptology Crypto'93, Berlin, 1993.
  • 4RFC 2627, Key management for multicast: Issues and architectures[S].
  • 5Draft-irtf-smug-groupkeymgmt-oft, Key management for large dynamic groups: One-way function trees and amortized initialization[S].
  • 6Selcuk A, Sidhu D. Probabilistic methods in multicast key management information[Z]. Security workshop 2000, Wollongong, Australia, 2000.
  • 7Knuth D E. Dynamic Huffman coding[J]. Journal of algorithms, 1985,6(2):163-180.
  • 8Schneier B. Applied cryptography: Protocols, lgorithms, and source code in C[M]. New York: Johr Wilery & Sons, Inc., 1996.
  • 9Waldvogel M, Caronni G, Sun D. The versakey framework: Versatile group key management[J]. IEEE Journal on Selected Areas in Communications, 1999,17(8);1614-1631.
  • 10Steiner M, Tsudik G, Waidner M. Key agreement in dynamic peer groups[J]. IEEE Transactions on Parallel and Distributed Systems, 2000,11(8):769-780.

共引文献12

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部