期刊文献+

多目标满意优化在注塑工艺参数自适应控制中的应用 被引量:1

Application of Multi-objective Satisfactory Optimization in Adaptive Control of Injection Molding Process Parameters
下载PDF
导出
摘要 提出了一种注塑工艺参数自适应控制系统的设计方法,通过构建注塑工艺和质量指标之间的多维非线性预测模型,在过程工艺参数的扰动下,基于满意优化理论,系统能根据满意度要求实时自动调整多个工艺参数,优化综合质量指标。多目标综合满意度函数的权系数可以由实验数据或实时数据库通过熵值赋权法确定,减少了人为因素对于优化设计的影响。实验结果验证了该方法的有效性和实用性。 A new approach was presented for the adaptive-control system design of injection molding process parameters. A neural network model was established to predict the multi-dimensioned non-linear relationship between injection process and quality index. When injection process parameters changed, the adaptive-control system based on satisfactory optimization theory could rectify several parameters to meet the comprehensive quality requirement. The weight of each objective in comprehensive satisfactory function could be determined by the data from experiments or real-time conditions with entropy method, which could avoid influence of artificial factors. The experimental results demonstrated the effectiveness and practicability of the approach.
出处 《塑料工业》 CAS CSCD 北大核心 2009年第9期39-42,49,共5页 China Plastics Industry
基金 国家自然科学基金(50765001) 广西教育厅科研基金(200708MS028)
关键词 满意优化 注塑 自适应控制 BP神经网络 熵值赋权法 Satisfactory Optimization Injection Molding Adaptive-control BP Neural Network Entropy Method
  • 相关文献

参考文献5

二级参考文献16

共引文献50

同被引文献5

  • 1陈立周.稳健设计[M].北京:机构工业出版社,1999..
  • 2Meng Jikui. Integrated robust design using computer exper iments and optimization of a diesel HPCR injector[D] Tallahassee: The Florida State University College of En gineering, 2006.
  • 3Huang Mingehih,Tai Chingehih. The effective factors in the warpage problem of an injection-molded part with a thin shell feature [J]. Journal of Materials Processing Technology, 2001, (110) : 1-9.
  • 4Du-SoonChoi, Yong-Taek Im. Prediction of shrinkage and warpage in consideration of residual stress in integrated simulation of injection rnolding[J], Composite Structures, 1999,47(1-4) : 655-665.
  • 5Lai P L, C Fyfe. Kernel and nonlinear canonical correla- tion analysis[J]. International Journal of Neural Systems, 2001,10(5), 365-377.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部