摘要
为讨论一个双曲-抛物奇异摄动问题的渐近展开问题,首先用能量方法建立稳定不等式,然后利用双重迭代法对原问题进行渐近展开,最后用稳定不等式证明了渐近解对原问题解的O(εn)阶逼近式,从而证明了渐近解的一致有效性.
A singular perturbation problem of a hyperbolic-parabolic partial differential equation is dis- cussed. In order to solve the asymptotic expansion of the problem, the energy method is applied to establish the continuous stability inequality and the n-order asymptotic expansion of the solution to this problem with respect to small parameters. Thus the uniform effectiveness of the asymptotic expansion is proved.
出处
《甘肃科学学报》
2009年第3期29-32,共4页
Journal of Gansu Sciences
基金
解放军炮兵学院青年后备人才基金(20070523)
关键词
奇异摄动问题
双曲-抛物偏微分方程
连续稳定不等式
小参数
singular perturbation problem
hyperbolic-parabolic partial differential equation
continuous stability inequality
small parameter