期刊文献+

含时滞的复杂动态网络模型的指数同步 被引量:4

Exponential Synchronization of Complex Dynamical Networks with Time-delay
下载PDF
导出
摘要 研究了一类含时滞的复杂网络的指数同步问题,通过构造李雅普诺夫函数和一定的计算技巧,不仅给出了线性反馈控制器的设计方法,而且保证了驱动—响应网络模型的指数同步.最后,用仿真算例验证了所给方法的有效性. The exponential synchronization of complex delayed dynamical networks is investigated. By constructing Lya punov function and using some computing technique, the linear feedback controllers are designed, and the exponential synchro nization between drive system and response system can be achieved. Numerical simulations show the effectiveness of the pro posed control design.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期1-4,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(60850004)
关键词 复杂动态网络 指数同步 李雅普诺夫稳定性理论 complex dynamical networks exponential synchronization I.yapunov stability theory
  • 相关文献

参考文献11

  • 1Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature,1998,393(6684):440-442.
  • 2Strogatz S H. Exploring complex networks[J]. Nature,2001,410(7024) :268-276.
  • 3BarabasiA I., Albert R. Emergence of scaling in random networks[J]. Science,1999,286(5439):509- 512.
  • 4Wang X F, Chen G. Synchronization in small-world dynamical networks[J].Int J Bifurcation Chaos,2002,12 (2):187-192.
  • 5Wang X F, Chen G. Synchronization in scale-freedynamical networks: Robustness and fragility[J].IEEE Trans,2002,49(1):54-62.
  • 6Lu J H, Yu X H, Chen G R. Chaos synchronization of general complex networks dynamical[J].Physics A,2004,334(1):281-302.
  • 7Li Z, Chen G R. Robust adaptive synchronization of uncertain dynamical networks[J]. Physics Letters A,2004,324(2) :166-178.
  • 8Li C G, Chen C- R. Synchronization in general complex dynamical networks with coupling delay[J], Physica A, 2004,343 (15):263- 278.
  • 9I.i P, Zhang Y, Zhang L. Global synchronization of a class of delayed complex networks[J]. Chaos, Solitons and Fractals,2006,30(4) : 903- 908.
  • 10Zhou J, Chen T. Synchronization in general complex delayed dynamical networks[J]. IEEE Trans Circuit Syst 1,2006,53 ( 3 ) : 733- 744.

同被引文献57

  • 1王路平,刘晓华.基于LMI的时滞细胞神经网络的指数稳定性分析[J].河南师范大学学报(自然科学版),2007,35(2):39-41. 被引量:2
  • 2Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer,1995.
  • 3Shawe-Taylor J,Bartlett P,Williamson R,et al.Structural risk minimization over data-dependent hierarchies[J].IEEE Transactions on Information Theory,1998,44(5):1926-1940.
  • 4Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995,20:273-297.
  • 5Arun Kumar M,Gopal M.Least squares twin support vector machines for pattern classification[J].Expert Systems with Applications,2009,36(4):7535-7543.
  • 6Wang L,Zhu J,Zou H.The doubly regularized support vector machine[J].Statistica Sinica,2006,16:589-615.
  • 7Wang L,Zhu J,Zou H.Hybrid huberized support vector machines for microarray classification and gene selection[J].Bioinformatics,2008,24(3):412-419.
  • 8Zhu J,Rosset S,Hastie T,et al.1-norm support vector machines[J].Advances in Neural Information Processing Systems,2004,16:49-56.
  • 9Tibshirani R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,Series B,1996,58:267-288.
  • 10Segal M,Dahlquist K,Conklin B.Regression approaches for microarray data analysis[J].Journal of Computational Biology,2003,10(6):961-980.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部