期刊文献+

T与*-Aluthge-变换■^((*))的核之间的关系 被引量:1

The Relations of Kerner between T and ■^((*))
下载PDF
导出
摘要 主要研究了T与它的*-Aluthge-变换■(*)的一些相似性质,如:当λ≠0时,T-λ核的维数减去(T-λ)*核的维数等于(■(*)-λ)核的维数减去(■(*)-λ)*核的维数;当λ≠0时,(T-λ)n的核与(T-λ)n+1的核相等当且仅当(■(*)-λ)n的核与(■(*)-λ)n+1的核相等,对某个n∈N. In this paper, some similar properties of T and T^(*) are studied, such as λ≠0, dim ker(T-λ)-dim ker (T-λ)^* is equal to dim ker(T^(*)-λ)-dimker(T^(*)-λ)^* ;if λ≠0, ker(T-λ)^n is equal to ker (T-λ)^n+1 if and only if (T^(*)-λ)^n is equal to ker(T^(*)-λ)^n+1, for some nE N, and so on.
作者 左飞 申俊丽
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期22-23,共2页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金天元青年专项基金(10726073)
关键词 T^(*)-λ)n的核 *-Aluthge变换 (T-λ)核的维数 (T—λ)^*核的维数 ker(T^(*)-λ)^n Aluthge transformation dim ker(T-λ) dim ker(T-λ)^*
  • 相关文献

参考文献6

  • 1Mee-K, Young Kim, Eungil Ko. Some connectionsbetween an operator and its Aluthge transform}[J]. Glasgow Math J,2005,47:167- 175.
  • 2Bong Jung IL, Eungil Ko, Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J], lntegr Equat Oper Th,2001,40 : 52- 60.
  • 3Bong J ung IL, Eungil Ko, Carl Pearcy. Aluthge transforms of operators[J]. Integr Equat Oper Th,2000,37:437-448.
  • 4Yamazaki T. On numerical range of the Aluthge transformation[J]. Linear Algebra Appl, 2002,341 : 111 - 117.
  • 5Kimura F. Analysis of non-normal operators via Aluthge transformation[J].Integr Equat Oper Th,2004,50:375-384.
  • 6左飞,杨长森,申俊丽.T与*-Aluthge-变换■^((*))的关系[J].河南师范大学学报(自然科学版),2008,36(6):24-26. 被引量:2

二级参考文献7

  • 1Mee-K, Young Kim, Eungil Ko. Some connections between an operator and its Aluthge transform[J]. Glasgow Math J, 2005,47:167- 175.
  • 2Bong Jung IL, Eungil Ko, Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J]. Integr Equat Oper Th, 2001,40:52--60.
  • 3Bong Jung IL, Eungil Ko, Carl Pearcy. Aluthge transforms of operators[J]. Integr Equat Oper Th, 2000,37:437--448.
  • 4Yamazaki T. On numerical range of the Aluthge transformation[J]. Linear Algebra Appl, 2002,341:111-117.
  • 5Kimura F. Analysis of non-normal operators via Aluthge transformation[J]. Integr Equat Oper Th,2004,50:375--384.
  • 6Berger C S,Stampfli J G. Mapping theorems for the numerical range[J]. Amer J Math, 1967,89:1047-- 1055.
  • 7杨长森,申俊丽.绝对-*-k-仿正规算子的谱(0≤k≤1)[J].河南师范大学学报(自然科学版),2008,36(2):152-152. 被引量:2

共引文献1

同被引文献5

  • 1Fumihiko Kimura. Analysis of Non-normal Operators via Aluthge Transformation[J] 2004,Integral Equations and Operator Theory(3):375~384
  • 2Il Bong Jung,Eungil Ko,Carl Pearcy. Spectral pictures of Aluthge transforms of operators[J] 2001,Integral Equations and Operator Theory(1):52~60
  • 3Il Bong Jung,Eungil Ko,Carl Pearcy. Aluthge transforms of operators[J] 2000,Integral Equations and Operator Theory(4):437~448
  • 4申俊丽,左飞.T与*-Aluthge-变换子■(*)之间的关系[J].新乡学院学报,2008,25(3):27-28. 被引量:1
  • 5左飞,杨长森,申俊丽.T与*-Aluthge-变换■^((*))的关系[J].河南师范大学学报(自然科学版),2008,36(6):24-26. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部