期刊文献+

采用SOM-BMU距离度量的异常检测方法

Anomaly Detection Method Adopting SOM-BMU Distance Metric
下载PDF
导出
摘要 提出了一种基于SOM-BMU距离度量的网络异常检测方法,该方法通过t分布,构建了被测样本到BMU距离的置信区间,当被检测样本与BMU之间的距离不在该置信区间内时,认定网络异常发生.此外,为了提高该方法的自适应性,引入了滑动窗口的操作.实验阶段,对比了基于OC-SVM的网络异常检测方法.实验表明,该方法具有较高检测率、低误报率和自适应性的特点. A network anomaly detection method based on SOM-BMU distance metric is proposed, which constructs a confidence range for distance between the sample and its BMU under student distribution. Anomaly detection is discovered when the distance is out of confidence range. In order to improve the self-adjustment to network situation, slide-window operation is used in this method. Experimental results in contrast to anomaly detection method based on One-Class SVM show that the method proposed in this paper gets high detection rate while keeping the false positive rate in a low level. The method can adjust it-self according to current network situation.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期132-134,共3页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省科技攻关项目(092102210231)
关键词 网络安全 异常检测 自组织映射 置信区间 滑动窗口 network security anomaly detection SOM confidence range slide window
  • 相关文献

参考文献5

  • 1Bace R G. Intrusion Deteetion[M]. Indianapolis: Macmillan Technical Publishing,2000.
  • 2Teuvo Kohonen. Self-Organizing Maps[M]. New York: Springer Verlag,1995.
  • 3Gao Jianhong, Xu Lixin, Dai Yaping. An intrusion detection system model based on self-organizing map[C]. Proceedings of the 5th World Congress on intelligent Control and Automation, Hangzhou,2004.
  • 4Ramadas M, Ostermann S, Tjaden B. Detecting Anomalous Network Traffic with Self-organizing Maps[J]. Springer, 2003,2820(2): 36-54.
  • 5Hettich S, Bay S D. The Vcl kDD Archivel[EB/OL].[2009-02-11]. http://kdd. ics. uci. edu/databases/kddcup99/kddcup99, html.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部