期刊文献+

一阶双曲方程非常规型矩形元的流线扩散法 被引量:2

Streamline-Diffusion Method of An Unconventional Hermite-Type Rectangular Finite Element for First-order Hyperbolic Equations
下载PDF
导出
摘要 研究了一阶双曲方程一个非常规Hermite型矩形元的流线扩散法.利用积分恒等式的技巧,在总体自由度比双二次矩形单元少的情况下,得到了阶的收敛效果,正好比标准的误差估计高出了12阶. In this paper, the streamline-diffusion method of an unconventional Hermite-Type rectangular finite element is studied for the first-order hyperbolic equations. Based on integration identities technique, the convergence order is obtained, which is half order higher than that of the standard error estimate, and the degrees of freedom are lower than the bi-quadratie rectangular element.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期184-188,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671184)
关键词 流线扩散法 双曲方程 非常规Hermite型矩形元 误差估计 streamline-diffusion method hyperbolic equations unconventional Hermite-Type rectangular finite ele- ment error estimate
  • 相关文献

参考文献6

  • 1Johnson C, Saranen J. Streamline diffusion methods for the incompressible Euler and Navier Stokes equations[J].Math Comp, 1986, 75(47):1-18.
  • 2Roos H G, Stynes M, Tobiska L, et al. Numerical Methods for Singularly Perturbed Differential Equations, Convection-Diffusion and Flow Problems[M]. Berlin: Springer, 1996.
  • 3Eriksson K, Johnson C. Adaptive streamline-diffusion finite element methods for stationary convection-diffusion problems[J]. Math Comp,1993,201(60):167-188.
  • 4Johnson C, Sehatz A H, Wahlbin L B, et al. Crosswind smear and pointwise errors in the streamline diffusion finite element methods[J]. Math Comp, 1987,179(49) : 25-38.
  • 5林群,严宁宁.高校有限元构造与分析[M].保定:河北大学出版社,1996.
  • 6石东洋,梁慧.一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推[J].计算数学,2005,27(4):369-382. 被引量:75

二级参考文献15

  • 1朱起定 林群.有限元超收敛理论[M].长沙:湖南科学技术出版社,1989..
  • 2P.G. Ciarlet, The Finite Element Method for Elliptic Problem, North-Holland, Amsterdam,1978.
  • 3S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag New York, Inc, 1998.
  • 4T. Apel, M. Dobrowolski, Anisotropic Interpolation with Application to the Finite Element Method, Computing, 47:3(1992), 277-293.
  • 5A. Zenisek, M. Vanmaele, The interpolation theory for narrow quadrilateral isoparametric finite elements, Numer. Math., 72:1(1995), 123-141.
  • 6T. Apel, G. Lue, Anisotropic mesh refinement in stabilized Galerkin methods, Numer.Math., 74:3(1996), 261-282.
  • 7T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, B.G. Teubner Stuttgart, Leipzig, 1999.
  • 8S.C. Chen, D.Y. Shi and Y.C. Zhao, Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes, IMA. J. Numer. Anal., 24(2004), 77-95.
  • 9O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Internat. J. Numer. Meth. Engrg., 1992, 33, Part 1: 1331-1364, Part 2: 1365-1382.
  • 10M. Zlamal, Some superconvergence results in the finite element method, Lecture Notes in Mathematics 606, Springer-verlag Now York, 1977, 353-362.

共引文献75

同被引文献24

引证文献2

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部