摘要
研究了一阶双曲方程一个非常规Hermite型矩形元的流线扩散法.利用积分恒等式的技巧,在总体自由度比双二次矩形单元少的情况下,得到了阶的收敛效果,正好比标准的误差估计高出了12阶.
In this paper, the streamline-diffusion method of an unconventional Hermite-Type rectangular finite element is studied for the first-order hyperbolic equations. Based on integration identities technique, the convergence order is obtained, which is half order higher than that of the standard error estimate, and the degrees of freedom are lower than the bi-quadratie rectangular element.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第5期184-188,共5页
Journal of Henan Normal University(Natural Science Edition)
基金
国家自然科学基金(10671184)
关键词
流线扩散法
双曲方程
非常规Hermite型矩形元
误差估计
streamline-diffusion method
hyperbolic equations
unconventional Hermite-Type rectangular finite ele- ment
error estimate