期刊文献+

递归神经网络的进化机器人路径规划方法 被引量:6

Path planning based on a recurrent neural network for an evolutionary robot
下载PDF
导出
摘要 针对机器人递归神经网络控制器在进化优化过程中存在的问题,利用改进的进化算法对递归神经网络控制器进行优化设计,提出了一种基于递归神经网络的进化机器人路径规划算法,该算法利用高斯变异和柯西变异相结合的方式进行变异操作,利用个体适应度和种群多样性指标使交叉概率和变异概率进行自适应调整.给出了算法的具体步骤,并与基于标准前馈网络的路径规划方法进行了比较.仿真结果表明递归神经网络控制器对动态未知环境具有更好的适应性. To investigate path planning for mobile robots based on a recurrent neural network and evolutionary algorithms, a recurrent neural controller was trained via an improved evolutionary algorithm. An algorithm for path planning was developed based on a recurrent neural network for an evolutionary robot. A combination of Gaussian and Cauchy mutations was used to ensure larger mutation steps and escape from local minima. Crossover and mutation probabilities were adjusted automatically according to variations in the diversity of the population and the fitness of individuals. A detailed process to apply the algorithm was presented. The algorithm was compared with the standard feed-forward network-based method of path planning. Experimental results indicated that the recurrent neural controller has high adaptability to dynamic environments.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第8期898-902,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60675044)
关键词 进化机器人 路径规划 进化算法 递归神经网络 evolutionary robot path planning evolutionary algorithms recurrent neural networks
  • 相关文献

参考文献11

  • 1MURPHY R R.人工智能机器人学导论[M].北京:电子工业出版社,2004..
  • 2JOSE A,LEBN F,TOSINI M,ACOSTA G G.Evolutionary reactive behavior for mobile robots navigation[J].Cybernetics and Intelligent Systems,2004,1:532-537.
  • 3NELSON A L,GRANT E,GATWTTI J M.Maze exploration behaviors using an integrated evolutionary robotic environment[J].Robotics and Autonomous Systems,2004,46:159-173.
  • 4NELSON A L,GRANT E,BARLOW G.Evolution of complex autonomous robot behaviors using competitive fitness[J].Integration of Knowledge Intensive Multi-Agent Systems,2003,1:145-150.
  • 5KIM P K,VADAKKEPAT P.Evolution of control systems for mobile robots[J].Evolutionary Computation,2002,1:617-622.
  • 6JAKOBI N,HUSBANDS P,HARVEY L.Noise and the reality gap:the use of simulation in evolutionary robotics[C]// Prol of tie 3rd European Conference on Artificial Life.Granada,Spain,1995:704-720.
  • 7DE GARIS H.Genetically programmed neural nets-using the genetic algorithm to train neural nets whose inputs and/ or outputs vary in time[C]//IJCNNPI.Seattle,America,1991:1391-1396.
  • 8LEE W P,HALLAM.A hybrid GP/GA approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks[C]//Proceedings of IEEE International Conference on Evolutionary Computation.Nayoya,Japan,1996:384-389.
  • 9王成栋,张优云.基于实数编码的自适应伪并行遗传算法[J].西安交通大学学报,2003,37(7):707-710. 被引量:34
  • 10FOGEL D B.An introduction to simulated evolutionary optimization[J].IEEE Transactions on Neural Network,1994,5(1):3-14.

二级参考文献6

共引文献39

同被引文献82

  • 1沈晶,顾国昌,刘海波.未知动态环境中基于分层强化学习的移动机器人路径规划[J].机器人,2006,28(5):544-547. 被引量:15
  • 2赵先章,常红星,曾隽芳,高一波.一种基于粒子群算法的移动机器人路径规划方法[J].计算机应用研究,2007,24(3):181-183. 被引量:22
  • 3张琪昌,王洪礼,竺致文,等.分岔与混沌理论及应用[M].天津:天津大学出版社,2004.
  • 4MA L,KHORASANI K. Constructive feedforward neural networks using Hermite poly nomial activation function[J]. IEEE Transactions on Neural Network, 2005, 16(4): 821833.
  • 5ISLAM Monirual, SATTAR A, AMIN F, YAO Xin, MURASE K. A new adaptive merging and growing algorithm for designing artificial neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 2009, 39(3): 705722.
  • 6KRASKOV A, STOGBAUER H, GRASSBERGER P. Estimating mutual information[J]. Phys Rev E, Sta Plasmas Fluids Relat Interdiscip Top, 2004, 69( 0661138): 1-16.
  • 7HONG Jie, HU Baogang. Twophase construction of multilayer perceptions using information theory[J]. IEEE Transactions on Neural Network, 2009, 20(4): 542-550.
  • 8]LIU Yinyin, STARZYK J A, ZHU Zhen. Optimized approximation algorithm in neural networks without overfitting[J]. IEEE Transactions on Neural Network, 2008, 19(6): 983-995.
  • 9HASSIBI B, STORK D, WOLFF G, WATANABE T. Optimal brain surgeon: extensions and performance comparisons[C]//Adavances in Neural Informati on Processing Systems 6. San Mateo, USA: Morgan Kaufman, 1994: 263-270.
  • 10FAHLMAN S E, LEBIERE C. The cascade correlation learning architecture[C]//Advances in Neural Information Processing Systems 2. San Mateo, USA: Morgan Kaufman, 1990: 524-532.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部