期刊文献+

基于交叉熵方法和支持向量机的模拟电路故障诊断 被引量:7

Analog circuit fault diagnosis based on cross-entropy method and support vector machine
原文传递
导出
摘要 针对故障诊断系统中存在的大量无关或冗余的特征会严重影响故障诊断性能的缺陷,提出了基于交叉熵和支持向量机方法进行特征选择和参数优化的故障诊断方法.首先以某种概率分布产生若干随机样本,并依据交叉熵最小原理建立分布参数的更新规则进行特征搜索和SVM参数优化;然后利用优化后的特征向量和参数训练支持向量机获得故障诊断模型.故障诊断实验结果表明,该故障诊断方法能有效地优化故障特征和模型参数,提高故障诊断性能. Considering that many irrelevant or redundant features in fault diagnosis system seriously spoil the fault diagnosis performance, a fault diagnosis method based on the cross entropy method and support vector machine is proposed. Firstly, a population of random variable samples is generated by some kinds of probability distribution, and the object value of the samples is evaluated by using SVM classifiers. Parameter-updating rule of distribution parameters is established based on min-cross-entropy theory. After several iterations, the best object feature subset and optimized parameters are selected out. Then the CEM-SVM model of the circuit fault diagnosis system is built by training the SVM with optimized features and parameters. Finally, analog circuit fault diagnosis experiment on leapfrog filter shows the effectiveness of feature selection and parameters optimization of the proposed method which improve the fault classification rate and the speed fault diagnosis time.
出处 《控制与决策》 EI CSCD 北大核心 2009年第9期1416-1420,共5页 Control and Decision
基金 教育部新世纪优秀人才支持计划项目(NCET-05-0804) 国家863计划项目(2006AA06Z222)
关键词 故障诊断 特征选择 模拟电路 交叉熵方法 支持向量机 Fault diagnosis Feature selection Analog circuit Cross-entropy method Support vector machine
  • 相关文献

参考文献11

  • 1Wang A, Liu J, Wang H, et al. A novel fault diagnosis of analog circuit algorithm based on incomplete wavelet packet transform and improved balanced binary-tree SVMs[J]. Bio-Inspired Computational Intelligence and Applications, 2007:482-493.
  • 2孙永奎,陈光,李辉.基于可测性分析和支持向量机的模拟电路故障诊断[J].仪器仪表学报,2008,29(6):1182-1186. 被引量:20
  • 3Rubinstein R Y, Kroese D P. The cross-entropy method: A unified approach to combinatorial optimization[M]. Monte-Carlo simulation and machine learning. New York: Springer, 2004.
  • 4Rubinstein R Y. The cross-entropy method and rare events for maximal cut and bipartition problems[J]. ACM Trans on Modeling and Computer Simulation,2002, 12(1):27-53.
  • 5Alon G, Kroese D P, Raviv T. Application of the crossentropy method to the buffer allocation problem in a simulation-based environment[J]. Annals of Operations Research, 2005, 134(1) : 137-151.
  • 6Kroese D P, Sergey P, Rubinstein R Y. The crossentropy method for continuous multi-extremal optimization [J]. Methodology and Computing in Applied Probability, 2006, 8(3): 383-407.
  • 7Barzilay O, Brailovsky V L. On domain knowledge and feature selection using a support vector machines[J]. Pattern Recognition Letters, 1999, 20(5): 475-484.
  • 8毛勇,周晓波,皮道映,孙优贤,WONG Stephen T.C..Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(10):961-973. 被引量:11
  • 9Tu C J, Chuang L Y, Chang J Y, et al. Feature selection using PSO-SVM [J]. Int J of Computer Science, 2007, 33(1): 111-116.
  • 10Kaminska B, Arabi K, Bell I, et al. Analog and mixed-signal benchmark circuits: First release [C]. Proc of the Int Test Conf. Washington DC, 1997:183- 190.

二级参考文献40

  • 1王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:12
  • 2袁海英,陈光.模拟电路的可测性及故障诊断方法研究[J].电子测量与仪器学报,2006,20(5):17-20. 被引量:17
  • 3[1]Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S.,Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X.,et al., 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature,403:503-511.
  • 4[2]Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002.Choosing kernel parameters for support vector machines.Machine Learning, 46:131-159.
  • 5[3]Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press,Cambridge.
  • 6[4]Dudoit, S., Fridlyand, J., Speed, T.P., 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97:77-87.
  • 7[5]Furlanello, C., Serafini, M., Merler, S., Jurman, G., 2003. An accelerated procedure for recursive feature ranking on microarray data. Neural Networks, 16:641-648.
  • 8[6]Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing,J.R., Caligiuri, M.A., et al., 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286:531-537.
  • 9[7]Guyon, I., Weston, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.
  • 10[8]Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner,M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M.,Rafeld, M., et al., 2001. Gene expression profiles in hereditary breast cancer. The New England Journal of Medicine, 344:539-548.

共引文献29

同被引文献90

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部