摘要
为降低网络拥塞风险和实现对网络队列缓存资源状态预测,基于智能控制技术和多尺度表示方法,通过引进自适应补偿模糊因子,运用Haar小波的优良特性,构造了一类在线无监督学习实时预测补偿模糊神经网络,提出了基于Haar队列动态多尺度融合自适应智能预测方案.仿真表明,该预测策略对于自相似特性数据流在队列缓存动态具有较好的预测能力.
By introducing an adaptive compensated fuzzy factor, an online non-supervised learning real-time prediction compensated fuzzy-neural network (OnSLRPCFNN) is designed. A novel strategy of adaptive intelligent prediction of queue length based on Haar wavelet multiscale fusion of queue dynamics is developed, which can decrease risk of network self-similar data flow congestion and improve the capability for the prediction of queue dynamics. The simulation shows the effectiveness of the proposed approach.
出处
《控制与决策》
EI
CSCD
北大核心
2009年第9期1421-1424,1428,共5页
Control and Decision
基金
国家自然科学基金项目(60774017
60874045)
中国科学院复杂系统与智能科学重点实验室开放课题项目(20060101)
关键词
多尺度融合
补偿模糊神网络
HAAR小波
自相似
Multiscale fusion
Compensated fuzzy-neural network
Haar wavelet
Self-similar