期刊文献+

城市混合交通场景中的多目标参数检测

Multiple Objects Parameter Detection in Urban Mixed Traffic Scene
下载PDF
导出
摘要 针对城市混合交通的复杂场景图像中多目标及其参数的检测问题,提出了一种由改进的帧间差分与边缘提取相结合的算法。利用帧间差分法检测车辆的存在,对帧差图像运用统计滤波算法提取多运动目标,通过形态学方法提取并细化目标边缘,根据主边缘(轮廓)信息完成车辆定位,最终结合摄像机标定结果计算出多目标交通参数。算法避免了复杂场景的背景建模,减少了运算量。实验结果表明,该算法不仅能较为准确地检测多运动目标的参数,而且具有较强的实时性。 For the multiple objects parameter detection in urban mixed traffic scene, a new algorithm of multiple objects parameter detection based on difference-image and edge detection was developed. In the algorithm, the differenceimage was used to detect the vehicle. Meanwhile, the statistical filtering algorithm was used in order to extract the multiple moving objects in the difference-image, while the morphology method was used to extract and refine the edge. Finally, the multiple objects parameter was calculated. The algorithm avoids the modeling process of background, and reduces the calculation. The experiment result shows that the algorithm can detect the multiple objects parameter effectively, and that the algorithm has strong timeliness.
出处 《交通信息与安全》 2009年第4期47-49,54,共4页 Journal of Transport Information and Safety
基金 河北省教育厅自然科学研究计划项目(编号:2009332)资助
关键词 混合交通 多目标参数检测 帧间差分 边缘提取 mixed traffic multiple objects parameter detection difference image edge extraction
  • 相关文献

参考文献7

二级参考文献28

  • 1潘薇,游志胜,吴鵾,王宁.基于模糊聚类和卡尔曼滤波的运动目标检测[J].计算机应用,2005,25(1):123-124. 被引量:10
  • 2昌娅 胡卫明.交通视觉监控系统中的三维车辆线框模型可视化算法[J].工程图学学报,2001,:28-33.
  • 3[1]Srihar,Phatak A V.Analysis of Image-Based Navigation System for Rotocraft Low altitude Flight[C]// IEEE Transaction on System,Man and Cybernetics,1992.USA.
  • 4[2]Yakimenko O A.Kaminer I I.et al.On Shipboard Navigation for Unmanned Air Vehicles Using Infrared Vision[C]// AIAA Guidance,Navigation,and Control Conference,Aug 2001.Montreal,Canada.
  • 5[3]Johnson A E,Matties L.Precise Image-Based Motion Estimation for Autonomous small Body Exploration[C]// Proc.5th Int'l Symp.Artificial Intelligence,Robotic,and Automation in space (iSAIRA 99),1999,Noordwijk.
  • 6[4]Benedetti A,Perona P.Realime 2-D Feature Detection on a Reconfigurable Computer[C]// Santa Barbara USA:Proc IEEE Comput Soc Conf ComputerVision and Pattern Recognition,1998.586 -593.
  • 7[5]Park K.H,Kim H.O.Collision-Free Path Planning of Stereo Vision Based Mobile Robots Using Power Potential Approach[C]// Control,Automation,Robotics and Vision,2002.Singapore.
  • 8[6]Luigi Di Stefano,Stefano Mattoccia.Fast Template Matching Using Bounded Partial Correlation[J].Machine Vision and Applications,2003,13:213-221.
  • 9[7]Horn B,Schunch B.Determining Optical Flow[J].Artificial Intelligence,1981,17:185-203.
  • 10[8]Lucas B D,Kanade T.,An Iterative Image Registration Technique with an Application to Stereo Vision[C]// Seventh Int.Joint Conference on Artificial Intelligence (IJCAI),1981,Vancouver,Canada.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部