期刊文献+

基于UKF滤波的水下目标被动跟踪研究 被引量:4

Target Passive Tracking Based on UKF Filter
下载PDF
导出
摘要 传统算法在解决目标被动跟踪时存在有偏、收敛速度慢或发散等不足,文中将无迹卡尔曼滤波(UKF)算法应用到目标的被动跟踪.该算法是一种以扩展卡尔曼滤波算法为基本框架,以贝叶斯理论和UT变换为理论基础的新型滤波算法.根据UT变换的基本原理给出了滤波过程的具体计算步骤并进行了仿真计算.理论分析和仿真结果表明,UKF算法的性能相当于二阶高斯滤波器,UKF算法在目标被动跟踪中的滤波精度、稳定性和收敛时间都优于EKF算法. The traditional algorithms applied in passive tracking have some shortages or disadvantages such as bias,slow convergence or divergence.To solve the problem,UKF algorithm is applied in passive tracking.This algorithm has its theory basis consisted of Bayesian theory and UT transform,and implements according to the frame of EKF.Theoretical analysis and simulation result indicate that the UKF has the same performance to 2-rank Gauss filter and has better performance than EKF algorithms in precision,stability and convergence time when it is applied to bearing-only target tracking.
作者 周浩 顾晓东
机构地区 海军工程大学
出处 《武汉理工大学学报(交通科学与工程版)》 2009年第4期734-736,752,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国防重点实验室基金项目资助(批准号:51444060101JB1108)
关键词 纯方位 非线性滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 bearings-only nonlinear filtering extended Kalman filter unscented Kalman filter
  • 相关文献

参考文献8

  • 1Berman Z. A reliable maximum likelihood algorithm for bearing-only target motion analysis[C]//IEEE proceedings of the 36th Conference on Decision and Control. San Diega The 36th Conference on Decision and Control 1997. 5012-5017.
  • 2Mo Longbing, Xu Yaowei. Bearing-only location using nonlinear least squares[C]//Proceedings of the IEEE National Aerospace and Electronics Conference. Davtom the IEEE National Aerospace and Electronics Conference 1997. 1042-1044.
  • 3吴玲,刘忠,卢发兴.全局收敛高斯-牛顿法解非线性最小二乘定位问题[J].火控雷达技术,2003,32(1):75-80. 被引量:19
  • 4Aidala V J. Kalman filter behavior in bearings-Only tracking applications[J]. IEEE Transaction on AES, 1979, 15(1):29-39.
  • 5王淇胜,李华军.纯方位目标跟踪—直角坐标卡尔曼滤波算法[J].青岛海洋大学学报(自然科学版),2000,30(2):352-356. 被引量:10
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401-422.
  • 7Wan E A, Merwe R. The unscented kalman filter for nonlinear estimation[C]//Proceedings of International Symposium on Adaptive Systems for Signal Processing, Communications and Control. Alberta, Canada, 2000, 153-158.
  • 8Julier S J, Uhlmann J K. A new approach for filtering nonlinear systems [C]//Proceedings of the American Control Conference. Washington The American Control Conference 1995. 1628-1632.

二级参考文献3

共引文献25

同被引文献34

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部