期刊文献+

可转换债券定价模型的RBF数值解

RBF Method of Pricing Convertible Bond with Credit Risk
下载PDF
导出
摘要 基于相机权益分析方法,建立了信用风险影响下的可转换债券定价模型及相应的初边值条件,并采用径向基配置法对该定价模型进行了数值求解.通过数值模拟讨论了信用风险对可转换债券价值的影响,并对桂冠转债的定价作了实证研究.结果表明,考虑信用风险的可转换债券定价模型能有效地提高定价精度. Radial Basis functions (RBFs) have been successfully developed as a truly mesh-free method tO find the numerical solutions of partial differential equations (PDEs) in recent years. Both global and compactly supported basis functions may be used in the methods to achieve a higher order of accuracy. In this paper, a pricing model for convertible bonds with credit risk was introduced. The global RBF method was adopted to solve the pricing model and a numerical implementation was provided. Moreover, it studies the effect of credit risk on the value of convertible bond. Numerical results for the empirical pricing study show that the present method is effective in dealing with the pricing model of convertible bonds and considering credit risk in convertible bond model helps to increase the precision of convertible bond pricing.
作者 何旭彪
出处 《武汉理工大学学报(交通科学与工程版)》 2009年第4期799-802,810,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:70801032)
关键词 可转换债券 信用风险 RBF方法 convertible bond credit risk RBF method
  • 相关文献

参考文献7

  • 1Jun-Koo K, Lee Y W. The pricing of convertible debt offerings[J]. Journal of Financial Economies, 1996, 41(2): 231-248.
  • 2Ayache E, Forsyth P A, Vetzal K R. Next generation models for convertible bonds with credit risk[J]. Wilmott Magazine, 2002, 12, 68-77.
  • 3Franke C, Sehaback R. Solving partial differential equations by collocation using radial basis functions [J]. Applied Mathematics and Computation, 1998, 93(1): 73-82.
  • 4Hon Y C. A quasi-radial basis functions method for American options pricing [J]. Computers and Mathematics with Applications, 2002, 43(3-5): 513-524.
  • 5Sarra S A. Adaptive radial basis function methods for time dependent partial differential equations[J]. Applied Numerical Mathematics, 2005, 54(1): 79-94.
  • 6Goto Y, Fei Z, Kan S, et al. Options valuation by using radial basis function approximation [J]. Engineering Analysis with Boundary Elements, 2007, 31(10) :836-843.
  • 7Dehghan M, Shokri A. A numerical method for two- dimensional Schrodinger equation using collocation and radial basis functions[J]. Computers & Mathematics with Applications, 2007, 54(1): 136-146.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部