期刊文献+

变形Jaynes-Cummings模型中的Pancharatnam相位

PANCHARATNAM PHASE IN DEFORMED JAYNES-CUMMINGS MODEL
下载PDF
导出
摘要 首先给出了变形J-C模型的Pancharatnam相位解析表达式,然后,分析讨论了变形J-C模型的Pancharatnam相位的演化规律,并比较了其与通常J-C模型Pancharatnam相位演化规律的异同.结果表明,Pancharatnam相位反映了与原子布居数反转以及光场量子特性相关的信息,且平均光子数较大时,变形J-C模型的Pancharatnam相位演化规律与通常J-C模型的Pancharatnam相位演化规律差异较大.这表明,Pancharatnam相位演化与系统所蕴涵的量子代数结构有密切的关系. The Pancharatnam phase of deformed Jaynes- Cummings(J -C) model was obtained analytically. The evolution of Pancharatnam phase for deformed Jaynes - Cummings model, was also discussed. The difference between the Pancharatnam phase evolution for deformed J - C model and that of conventional J - C model has been in- vestigated. The results show that the Pancharatnam phase reveals some information of population reversion of an at- om and the quantum nature of the cavity field. And the larger is the average photon number, the larger is the differ- ence of Pancharatnam phase evolution between deformed J - C model and conventional J - C model. This exhibits that the evolution of Pancharatnam phase is closely relative to the quantum algebra structure of the system.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2009年第3期39-42,共4页 Journal of South China Normal University(Natural Science Edition)
基金 广东省科技计划项目(2007B010400066)
关键词 变形 Pancharatnam相位 几何相位 deformed Pancharatnam phase geometric phase
  • 相关文献

参考文献13

  • 1BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Roy Soc A, 1984, 392:45 -47.
  • 2SHAPERE A, WILCZEK F. Geometric phase in physics [ M]. Singapore: World Scientific, 1989.
  • 3颜玉珍,胡连.旋转磁场中的自旋演化及几何位相[J].华南师范大学学报(自然科学版),2004,36(2):82-85. 被引量:6
  • 4高玉梅,胡连,张晓燕.旋转中子及螺旋光纤的几何相[J].华南师范大学学报(自然科学版),2005,37(1):60-65. 被引量:2
  • 5KWIAT P G, CHIAO R. Observation of a nonclassical Berry's phase for the photon[J]. Phys Rev Lett,1991,66 (5) : 588 -591.
  • 6WEBB C L, GODUN R M, SUMMY G S, et al. Measurement of Berry's phase using an atom interferometer [ J ]. Phys Rev A, 1999,60(3) :R1783 - R1786.
  • 7PANCHARATNAM S. Generalized theory of interferencia and its applications[J]. Proc Indian Acad Sci A, 1956, 44 : 247 - 262.
  • 8WANG Z S, WU C F, FENG X L, et al. Nonadiabatic geometric quantum computation [ J ]. Phys Rev A,2007, 76 : 044303.1 - 044303.4.
  • 9MARRUCCI L, MANZO C, PAPARO D. Paneharamam -Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation [J]. Appl Phys Lett, 2006,88 (22): 221102. 1 - 221102.3.
  • 10BONATSOS D, DASKALOYANNIS C, LALAZISSIS G A. Unification of Jaynes - Cummings model [ J ]. Phys Rev A, 1993,47(4) :3448 - 3451.

二级参考文献18

  • 1AHARONOV Y, BOHM D. Significance of electromagnetic potentials in the quantum theory [J]. Phys Rev, 1959,155(3) :485.
  • 2BERRY M V. Quantal phase factor accompanying adiabatic changes [J]. Proc Roy Soc London, 1984,A392:45.
  • 3AHARONOV Y, ANANDAN J. Phase change during a cyclic quantum [J]. Phys Rev Lett, 1987,58:1593.
  • 4BULGACA. On the effective action for a nonadiabatic quantum process [J]. Phys Rev, 1988,A37:4084.
  • 5RABI I I, MILLMAN S, KUSCH P, et al. The molecular beam resonance method for measuring nuclear magnetic moments [J]. Phys Rev, 1939, 55:526.
  • 6NIELSIN M A, CHUANG L. Quantum Computation and Quantum Information [ M]. London:Cambridge University Press, 2000.
  • 7JONES J A, VEDRL V, EKERT A, et al. Geometric quantum computation using nuclear magnetic resonance [ J].Nature, 2000,403:869.
  • 8CHIAO R Y, WU Y S. Manifestation of Berry's topological phase for the photon[J]. Phys Rev Lett, 1986, 57:933-936.
  • 9TOMITA A, CHIAO R Y. Observation of Berry's topological phase by using an optical fiber[J]. Phys Rev Lett, 1986, 57:937-940.
  • 10HASEGAWA Y, LOIDL R, BADUREK G, et al. Observation of off-diagonal geometric phases in polarized-neutron-interferometer experiments[J]. Phys Rev A, 2002, 65:052111-1-10.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部