期刊文献+

关于矩阵值Lipschitz代数的子代数研究

Researches on subalgebras of matrix-valued Lipschitz algebras
下载PDF
导出
摘要 运用算子论与算子代数的方法,讨论了Lipschitz代数Lα(K,Mn(F))和lα(K,Mn(F))上的几种范数的关系;证明了它们是C(K,Mn(F))的含单位的、正则的、自伴的和逆闭的*-子代数;得到了(lα(K,Mn(F)),‖.‖α)是(Lα(K,Mn(F)),‖.‖α)的含单位的、逆闭的子代数. Using methods of operator theory and operator algebra, some relations of several norms on the Lipschitz algebras L^α(K, Mn(F)) and l^α(K, Mn(F)) are discussed and it is proved that they are all unital regular *-subalgebras of the C^*-algebra C(K,Mn (F)), it is obtained that (l^α(K, Mn(F)), ||·||α .) is a closed and unital inverseclosed subalgebra of (L^α(K, Mn(F)), ||·||α).
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期7-10,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10571113 10871224 10826081)
关键词 Lipschitz代数 子代数 范数 Lipschitz algebra subalgebra norm
  • 相关文献

参考文献17

  • 1Weaver N. Lipschitz algebras and derivations Ⅱ. Exterior differentiation [J]. Journal of Functional Analysis, 2000, 178(1) :64-112.
  • 2Robinson D W. Lipschitz operators[J]. Journal of Functional Analysis, 1989, 85(1) :179-211.
  • 3Bade W G, Curtis P C, Dales H G. Amenability and weak amenability for Lipschitz algebras[J]. Proceedings of the American Mathematical Society, 1987, 55 (3) : 359-377.
  • 4Beanka B. Automatic continuity of Lipschitz algebras [J]. Journal of Functional Analysis, 1995, 131(2) :115- 144.
  • 5Cavaretta A S, Smithies L. Lipschitz-type bounds for the map A→│A│ on B(H) [J]. Linear Algebra and its Applications, 2003, 360:231-235.
  • 6彭济根,徐宗本.Banach空间的Lipschitz对偶及其应用[J].数学学报(中文版),1999,42(1):61-70. 被引量:6
  • 7彭济根,徐宗本.非线性Lipschitz算子半群的渐近性质及其应用[J].数学学报(中文版),2002,45(6):1099-1106. 被引量:4
  • 8王利生,徐宗本.非线性Lipschitz连续算子的定量性质(Ⅳ)──谱理论[J].数学学报(中文版),1995,38(5):628-631. 被引量:10
  • 9Cao Huaixin, Xu Zongben. Some properties of nonlinear Lipschitz-α operators [J]. Aeta Mathematiea Applieatae Sinica, 2002, 45(2):279-286.
  • 10曹怀信,徐宗本.非交换Lipschitz-φ算子代数[J].数学学报(中文版),2004,47(3):433-440. 被引量:7

二级参考文献26

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部