期刊文献+

2-DOF并联机构动力学建模与迭代学习控制 被引量:2

Dynamic Modeling and Iterative Learning Control of 2-DOF Parallel Mechanism
下载PDF
导出
摘要 针对一种直线电机驱动的2-DOF并联机构,结合直线电机的动力学特性,采用Lagrange方法对其进行动力学建模。考虑该机构重复性动作及其不确定性和非线性特点,提出一种自适应神经网络迭代学习控制方法。在该控制算法的作用下,系统输出能较好地跟踪给定输入。严格证明及仿真结果验证了该算法的有效性。 The dynamic model of a kind of 2-DOF parallel mechanism driven by linear motor is established by Lagrange method combined with the dynamics characteristic of the linear motor. Adaptive neural network iterative learning control is proposed considering repetitive action, uncertainty and nonlinearity of the system. Using this control algorithm, the outputs of the system can track the desired trajectories. The strict proof and simulation results validate the validity of the controller.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第17期163-166,共4页 Computer Engineering
基金 河北省自然科学基金资助项目(F2009000500)
关键词 动力学建模 迭代学习控制 并联机构 不确定性 dynamic modeling iterative learning control parallel mechanism uncertainty
  • 相关文献

参考文献6

  • 1Chablat D, Wenger P. Architecture Optimization of a 3-DOF Parallel Mechanism for Machining Applications[J]. IEEE Trans. on Robotics Automation, 2003, 19(3): 403-410.
  • 2Staicu S. Recursive Modelling in Dynamics of Agile Wrist Spherical Parallel Robot[J]. Robotics and Computer Integrated Manufacturing, 2008, 25(2): 409-416.
  • 3杨小军,李俊民.基于神经网络的鲁棒自适应滑模迭代学习控制[J].西安电子科技大学学报,2002,29(3):382-386. 被引量:8
  • 4杨胜跃,罗安,樊晓平.不确定性机器人系统自适应鲁棒迭代学习控制(英文)[J].控制理论与应用,2003,20(5):707-712. 被引量:15
  • 5Hwang C L, Lin H Y. A Fuzzy Decentralized Variable Structure Tracking Control With Optimal and Improved Robustness Designs: Theory and Applications[J]. IEEE Trans. on Fuzzy Systems, 2005, 12(5): 615-630.
  • 6Xu Jianxin, Tan Ying. A Composite Energy Function Based Learning Control Approach for Nonlinear Systems with Time-varying Parametric Uncertainties[J]. IEEE Trans. on Automatic Control, 2002, 47(11): 1940-1945.

二级参考文献15

  • 1ARIMOIO S, KAWAMURA S, MIYASKI F. Bettering operation of robots by learning [J]. J of nobotic Systems, 1984,1(2):123-140.
  • 2JANG T, CHOI C H, AHN H S. Iterative learning control in feedback systems [J]. Automatica, 1995,31(2):243-248.
  • 3LEE J H, LEE K S, KIM W C. Model-based iterative learning control with a quadratic criterion for time-varying linear systems [ J ].Automatica, 2000,36(4):641-657.
  • 4PARK K H, KUC T Y, LEE J S. Adaptive learning control of uncertain robotic systems [J]. Int J Control, 1996,65(5) :725 - 744.
  • 5SEO W G, PARK K H, LEE J S. Intelligent learning control for ac lass of nonlinear dynamics system [ J]. IEE Proc -- Control Theory and Applications, 1999,146(2):165- 170.
  • 6PRENCH M, ROGERS E. Nonlinear iterative learning by an adaptive Lyapunov technique [ A]. Proc of the 37 th IEEE Conference on Decision and Control [C]. Tampa, FL:Piscataway, 1998:175-180.
  • 7CHOI J Y, LEE J S. Adaptive iterative learning control of uncertain robotic systems [ J ]. IEE Proc--Control Theory and Applications,2000,147(2) :217 - 223.
  • 8XU Jianxin, VISWNATHAN B. Adaptive robust iterative learning control with dead zone scheme [J]. Automatica, 2000,36(1) :91 -99.
  • 9Slotine J J E,Lee W.Applied Nonlinear Control[]..1991
  • 10Utkin V I.Variable Structure Systems with Sliding Modes[].IEEE Transactions on Automatic Control.1978

共引文献19

同被引文献7

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部