期刊文献+

改进的基于K均值聚类的SVDD学习算法 被引量:1

Updated Learning Algorithm of Support Vector Data Description Based on K-Means Clustering
下载PDF
导出
摘要 针对基于K均值聚类的支持向量数据描述(SVDD)学习算法(KMSVDD)识别精度低于传统SVDD学习算法的问题,提出一种改进算法。将各聚类簇中支持向量合并学习生成中间模型,从支持向量以外的非支持向量数据中找出违背中间模型KKT条件的学习数据,并将这些数据与聚类簇中支持向量合并学习继而得到最终学习模型。实验结果证明,该改进算法的计算开销与KMSVDD相近,但识别精度却高于KMSVDD,与传统SVDD相近。 Aiming at the flaw that the recognition precision of Support Vector Data Description based on K-Means(KMSVDD) clustering is lower than traditional Support Vector Data Description(SVDD), an improvement algorithm is proposed. This algorithm learns support vectors of every cluster and produces middle model, then finds out the data against middle model's Karush-Kuhn-Tucker(KKT) condition from non-support vectors and obtains the final studying model by leaning them with all support vectors. Experimental result proves that this improvement algorithm has similar computing expenditure with KMSVDD and its recognizing accuracy is higher than KMSVDD and similar to traditional SVDD.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第17期184-186,共3页 Computer Engineering
基金 盐城工学院重点学科建设基金资助项目(XKY2007065)
关键词 支持向量数据描述 K均值 KKT条件 Support Vector Data Description(SVDD) K-Means Karush-Kuhn-Tucker(KKT) condition
  • 相关文献

参考文献7

二级参考文献27

  • 1袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000..
  • 2Tax D M J, Duin R P W. Support vector domain description [J]. Pattern Recognition Letters, 1999, 20(11-13): 1 191~1 199.
  • 3Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support vector domain description for speaker recognition [A].2001 IEEE Signal Processing Society Workshop.Falmouth, 2001.
  • 4Tax D M J, Duin R P W. Outliers and data descriptions [A]. Seventh Annual Conference of the Advanced School for Computing and Imaging. Delft,2001.
  • 5Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 6袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000.118-131.
  • 7Denning D E. An Intrusion Detection Model. IEEE Transactions orSoftware Engineering, 1987, 13(2):222-228
  • 8Hofmeyr S A. An Immunological Model of Distributed Detection and Its Application to Network Security [Ph.D. Thesis]. University of New Mexico, 1999
  • 9Lee W, Stolfo S J, Mok K W. A Data Mining Framework for Building Intrusion Detection Models. In Proceedings of the IEEE Symposium on Security and Privacy, 1999:120-132
  • 10Ghosh A, Wanken J, Charron F. Detecting Anomalous and Unknown Intrusions Against Programs. In Proceedings of the 1998 Annual Computer Security Applications Conference, 1998:259-267

共引文献110

同被引文献16

  • 1范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 2Hyvarinen A, Oja E.A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9 (7): 1483- 1492.
  • 3Lin Kuan Ming, Lin Chin Jen. A study on reduced support vector machine. IEEE Transactions on Neural Networks, 2003, 14 (6):1449 -1459.
  • 4Kim P J, Chang H J, Song D S. Fast support vector data description using K means clustering//Proceeding of the 4th International Symposium on Neural Networks. Nanjing, China, 2007 : 506-514.
  • 5Yan Liu, Bojan Cukic, Srikanth Gururajan. Decompose and combine--a fast training algorithm for SVDD. United States Institute of Peace Technical Report, V&V of Adaptive Systems [ EB/OL ]. http: //sarpresults. ivv. nasa. gov/ DownloadFile/35/19/Decompose G20 and %20Combine%20-G 20AG 20Fast% 20Training% 20Algorithm% 20for% goSVDD, pdf.
  • 6Jong Min Lee, ChangKyoo Yoo, Sang Wook Choi, Veter A Vanrolleghem, ln-Beum Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59 (1) : 223- 234.
  • 7Shao Jidong, Rong Gang. Nonlinear process monitoring based on maximum variance unfolding projections. Expert Systems with Applications, 2009, 36:11332 - 11340.
  • 8Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Society for Industrial and Applied Mathematics Journal of Scientific Computing, 2004, 26 (1) : 313 338.
  • 9Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54 (1) : 45- 66.
  • 10ZhaoYinggang(赵英刚) ChenQi(陈奇) HeQinming(何钦铭).仪器仪表学报,2006,27(6):798-800.

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部