期刊文献+

基于局部二元模式的电子胃镜图像识别 被引量:3

Electronic Gastroscope Image Recognition Based on LBP
下载PDF
导出
摘要 由于受到胃部蠕动、气泡、食物、光照以及图像采集过程中摄像头移动等因素影响,电子胃镜图像存在亮度变化较大等问题,常用的计算机辅助分析方法难以取得理想的效果。针对该问题,在分析电子胃镜图像特点的基础上,提出一种电子胃镜图像病灶良恶性识别方法。在不同颜色通道中使用结合局部二元模式算法,提取其纹理特征向量,分别输入支持向量机进行训练和识别,对不同颜色空间的识别结果采用投票原则确定最终结果。实验结果表明,该方法的识别率达到92.2%。 The electronic gastroscope image, which is sensitively affected by gastric peristalsis, air bubble, food, illumination and camera moving during the capturing, has some defect such as large illumination variety, so common computer aided analysis method can not achieve good result. Based on analyzing the characteristic of electronic gastroscope image, a new method to distinguish between carcinoid electronic gastroscope image and malignancy ones is presented. It uses the Local Binary Pattern(Lt3P) method in RGB channel of images and extracts the texture feature which is subsequently trained and classified by Support Vector Machine(SVM), gets the classification of all three channels and decides the image carcinoid or malignancy through voting principle to supply the clinical analysis. Experimental result indicates the method gets a recognition rate of 92.2%.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第17期204-206,共3页 Computer Engineering
基金 上海市卫生局"胃肠肿瘤重点学科"子课题基金资助项目"形似良性病变早期胃癌的临床研究"(05-III-005-012) 上海交通大学2007年医工(理)交叉基金资助项目"早期胃癌诊断的关键技术及应用研究"(YG2007MS02)
关键词 电子胃镜图像 纹理特征 局部二元模式 electronic gastroscope image texture feature Local Binary Pattern(LBP)
  • 相关文献

参考文献12

  • 1徐飚,王建明.胃癌流行病学研究[J].中华肿瘤防治杂志,2006,13(1). 被引量:159
  • 2程时丹.Smad4基因在人类胃癌中的表达及意义的实验研究[D].上海:上海交通大学,2006.
  • 3Zheng M M, Krishnan S M, Tjoa M P. A Fusion-based Clinical Decision Support for Disease Diagnosis from Endoscopic Images[J]. Computers in Biology and Medicine, 2005, 35(3): 259-274.
  • 4Guvenira H A, Emeksizb N, Ikizler N, et al. Diagnosis of Gastric Carcinoma by Classification on Feature Projections[J]. Artificial Intelligence in Medicine, 2004, 31 (3): 231-240.
  • 5Davis L S, Johns S A, Aggarwal J K. Texture Analysis Using Generalized Cooccurrenee Matrices[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1979, 1(3): 251-259.
  • 6Kashyap R L, Khotanzad A. A Model-based Method for Rotation lnvariant Texture Classification[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986, 8(4): 472-481.
  • 7Fountain S R. Efficient Rotation Invariant Texture Features for Content-based Image Retrieval[J]. Pattern Recognition, 1998, 31(11): 1725-1732.
  • 8Ojala T, PietikaEinen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distributions[J]. Pattern Recognition, 1996, 29(1): 51-59.
  • 9PietikaEinen M, Ojala T. Rotation-Invariant Texture Classification Using Feature Distributions[J]. Pattern Recognition, 2000, 33(8): 43-52.
  • 10Vapnik V. The Nature of Statistical Learning Theory[M]. New York, USA: Springer, 1995.

二级参考文献10

  • 1杨利英,覃征,张选平.分类器模拟算法及其应用[J].西安交通大学学报,2005,39(12):1311-1314. 被引量:3
  • 2Kittler J.Improving recognition rates by classifier combination:a theoretical framework[C]//Progress in Handwriting Recognition.Singapore:World Scientific Publishing,1997:231-248.
  • 3Hull J J,Commike A,Ho T K.Multiple algorithms for handwritten character recognition[C]//Proceedings of International Workshop Frontiers in Handwriting Recognition.Montreal,Canada,1990:117-129.
  • 4Xu L,Krzyzak A,Suen C Y.Methods of combining multiple classifiers and their applications to handwriting recognition[J].IEEE Transaction on Systems,Man,Cybemetics,1992,22(3):418-435.
  • 5Lin Xiaofan,Yacoub Sherif,Burns John,et al.Performance analysis of pattern classifier combination by plurality voting[J].Pattern Recognition Letter,2003,24(12):1959-1969.
  • 6Lam L,Suen C Y.Application of majority voting to pattern recognition:an analysis of the behavior and performance[J].IEEE Trans Systems Man Cybernet,1997,27(5):553-567.
  • 7Kuncheva L I.Lombining classifiers by clustering,selection and decision templates 2000[EB/OL].[2006-06].http://www.bangor.ac.uk/~masooa/publications.html.
  • 8Kuncheva L I,Whitaker C J.Measure of diversity in classifier ensembles[J].Machine Learning,2003,51(2):181-207.
  • 9Kuncheva L I,Whitaker C J,Shipp C A,et al.Limits on the majority vote accuracy in classifier fusion[J].Pattern Analysis Application,2003,6(1):22-31.
  • 10孙怀江,胡钟山,杨静宇.基于证据理论的多分类器融合方法研究[J].计算机学报,2001,24(3):231-235. 被引量:25

共引文献166

同被引文献27

  • 1王峰,吕植勇,何晓昀,陈庆虎,阙大顺,严新平.铁谱磨粒图像的计算机纹理分析[J].润滑与密封,2005,30(2):17-19. 被引量:7
  • 2肖梅,韩崇昭,张雷.基于多尺度轮廓结构元素的数学形态学边缘检测[J].西安交通大学学报,2005,39(6):659-660. 被引量:22
  • 3杨其明.磨粒分析:磨粒图谱与铁谱技术[M].北京:中国铁道出版社,2002.
  • 4Ojala T, Pietikainen M, Harwood D. A comparative study of tex- ture measures with classification based on feature distribution [ J]. Pattern Recognition, 1996,29( 1 ) :51 - 59.
  • 5Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray scale and rotation invariant texture analysis with local binary patterns [ J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence ,2002,24 ( 7 ) :971 - 987.
  • 6Chunyu Y, Jun F, Jinjun W, Yongming Z. Video fire smoke detection using motion and color features. Fire Technology, 2010, 46(3): 651 663.
  • 7Demirel H, Anbarjafari C Discrete wavelet transform-based satellite image resolution enhancement. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49(6): 1997- 2004.
  • 8Pal M, Foody GM. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48(5): 2297 2307.
  • 9Ojala T, Valkealahti K, Oja E, et al. Texture discrimination with multidimensional distribution of signed gray -level differ- ences [ J ]. Pattern Recognition,2001,34 (3) :727 - 739.
  • 10Guo Z H,Zhang L,Zhang D, et al. Rotation invariant texture classification using adaptive LBP with directional statistical features [ C]. Hong Kong, China: Proceeding the 17th IEEE International Conference on Image Processing,IEEE,2010.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部