摘要
研究了Quantic格的内部运算,证明了Quantic格中的二元运算&满足结合律的充分必要条件是对任意的a、b、c∈Q,均有a&b→c=a→(b→c).讨论了商Quantic格与核映射之间的关系,证明了Quantic格上的同态定理:设f:P→Q是满的Quantic格同态,则存在P上的核映射j,使得Pj≌Q.
The interior operations of a quantic lattice Q are discussed and it is proved that a sufficient and necessary condition for the binary operation & to be associative is a&b→c=a→(b→c) for all a,b,c∈Q.The relations between quotient quantic lattices and nuclei in a quantic lattice are discussed.At last,a homomorphism theorem is given,which says that if f: P→Q is a surjective homomorphism between quantic lattices,then there is a nucleus j in P such that Pj≌Q.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第3期5-8,12,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10871121)
南阳师范学院博士基金资助项目(nynu200749)
南阳市科技攻关项目(2008SF604)