摘要
本文研究了微分方程f′2=a0(z)(f-a1(z))2f,其中a0(z),a1(z)是单位圆D内的解析函数.设f(z)是上述微分方程的解,得到了f(z)属于加权Hardy空间Hq∞(D)的一个充分条件,其中2≤q<∞,并推广了已有的结果.
The differential equation f^2 = a0(z)(f- a1(z))^2 f, where a0(z) and a1(z) are analytic functions in the unit disc D,is considered.Let f(z)be a solution of the upper differential equation,and a sufficient condition for f(z) to belong to the weighted Hardy space Hq^∞ (D), where 0≤q 〈 w, is obtained, which extends a result that has been given.