期刊文献+

Iterative Schemes for a Family of Finite Asymptotically Pseudocontractive Mappings in Banach Spaces 被引量:1

Iterative Schemes for a Family of Finite Asymptotically Pseudocontractive Mappings in Banach Spaces
下载PDF
导出
摘要 Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E. Let Ti : K→ K, i=1, 2,... ,N, be N uniformly L-Lipschitzian, uniformly asymptotically regular with sequences {ε^(i)n} and asymptotically pseudocontractive mappings with sequences {κ^(i)n}, where {κ^(i)n} and {ε^(i)n}, i = 1, 2,... ,N, satisfy certain mild conditions. Let a sequence {xn} be generated from x1 ∈ K by zn:= (1-μn)xn+μnT^nnxn, xn+1 := λnθnx1+ [1 - λn(1 + θn)]xn + λnT^nnzn for all integer n ≥ 1, where Tn = Tn(mod N), and {λn}, {θn} and {μn} are three real sequences in [0, 1] satisfying appropriate conditions. Then ||xn- Tixn||→ 0 as n→∞ for each l ∈ {1, 2,..., N}. The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye, Reinermann, Rhoades and Schu. Let E be a real Banach space and K be a nonempty closed convex and bounded subset of E.Let Ti:K → K,i = 1,2,...,N,be N uniformly L-Lipschitzian,uniformly asymptotically regular with sequences {ε(ni)} and asymptotically pseudocontractive mappings with sequences {kn(i)},where {kn(i)} and {εn(i)},i = 1,2,...,N,satisfy certain mild conditions.Let a sequence {xn} be generated from x1 ∈ K by zn:=(1-μn)xn+μnTnn xn,xn+1:= λnθnx1+ [1-λn(1 + θn)]xn + λnTnn zn for all integer n 1,where Tn = Tn(modN),and {λn},{θn} and {μn} are three real sequences in [0,1] satisfying appropriate conditions.Then ||xn-Tlxn|| → 0 as n →∞ for each l ∈ {1,2,...,N}.The results presented in this paper generalize and improve the corresponding results of Chidume and Zegeye[1],Reinermann[10],Rhoades[11] and Schu[13].
作者 GU Feng
出处 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期864-870,共7页 数学研究与评论(英文版)
基金 Foundation item: the National Natural Science Foundation of China (No. 10771141) the Natural Science Foundation of Zhejiang Province (Y605191) the Natural Science Foundation of Heilongjiang Province (No. A0211) and the Scientific Research Foundation from Zhejiang Province Education Committee (No. 20051897).
关键词 approximated fixed point sequence uniformly asymptotically regular mapping asymptotically pseudocontractive mapping. 实Banach空间 渐近伪压缩映象 家庭 有限 迭代 实序列 大肠杆菌 闭凸子集
  • 相关文献

参考文献15

  • 1CHIDUME C E, ZEGEYE H. Approximate fixed point sequences and convergence theorems for asymptotically pseudocontractive mappings [J]. J. Math. Anal. Appl., 2003, 278(2): 354-366.
  • 2CHIDUME C E, ZEGEYE H, NTATIN B. A generalized steepest descent approximation for the zeros of m-accretive operators [J]. J. Math. Anal. Appl., 1999, 236(1): 48-73.
  • 3GOEBEL K, KIRK W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc. Amer. Math. Soc., 1972, 35: 171-174.
  • 4GOEBEL K, KIRK W A. Topics in Metric Fixed Point Theory [M]. Cambridge University Press, Cambridge, 1990.
  • 5GORNICKI J. Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces [J]. Comment. Math. Univ. Carolin., 1989, 30(2): 249-252.
  • 6KATO T. Nonlinear semi-groups and evolution equations [J]. J. Math. Soc. Japan, 1967, 19: 508-520.
  • 7MOORE C, NNOLI B V C. Iterative solution of nonlinear equations involving set-valued uniformly accretive operators [J]. Comput. Math. Appl., 2001, 42(1-2): 131-140.
  • 8MORALES C H, JUNG J S. Convergence of paths for pseudocontractive mappings in Banach spaces [J]. Proc. Amer. Math. Soc., 2000, 128(11): 3411-3419.
  • 9REICH S. Iterative Methods for Accretive Sets [M]. Birkhauser, Basel-Boston, Mass., 1978.
  • 10REINERMANN J. Uber fixpunkte kontrahierender Abbildungen und schwach konvergente Toeplitz-Verfahren [J]. Arch. Math. (Basel), 1969, 20: 59-64. (in German).

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部