摘要
设ΩRN(N>2)是单位球,文中讨论了非线性椭圆型方程-Δu=a(x)|u|2-2u+λu,x∈Ωu=0,x∈Ω{解的存在性,其中2=2NN-2是Sobolev临界指数,λ为常数。在a(x)的适当限制下,得到了上述问题的一个存在性结果。
The boundary value problems are considered: - Δ u=a(x)|u| 2 -2 u+λu,x∈Ω u=0,x∈Ω where ΩR N (N>2) is the unit ball, 2 =2NN-2 is the critical exponent for the Sololev embedding and λ is a real parameter. The existence of nontrivial solutions of the above problems are proved.
出处
《青岛化工学院学报(自然科学版)》
1998年第3期287-290,共4页
Journal of Qingdao Institute of Chemical Technology(Natural Science Edition)