摘要
建立了一类具有隔离和垂直传染的SIQR传染病模型,在脉冲免疫接种条件下,分析了其全局动力学行为.利用频闪映射,获得了无病周期解,给出了此周期解的全局稳定性分析.并获得了系统一致持续生存的条件.
An SIQR epidemic disease model with quarantine and vertical transmission is formulated, and the global dynamics behaviors of the model under pulse vaccination are analyzed. By use of the stroboscopic map, an 'infection-free' periodic solution is obtained, and the analysis of global stability of the 'infection-free' periodic solution is given. Furthermore, the sufficient condition for permanence of the system is obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第17期78-85,共8页
Mathematics in Practice and Theory
基金
山东科技大学"春蕾计划"项目(2008BWZ076)
山东省软科学研究计划项目(2009RKB153)
关键词
隔离
脉冲免疫接种
垂直传染
全局渐近稳定性
持久性
quarantine
pulse vaccination
vertical transmission
global asymptotic stability permanence