期刊文献+

二阶非线性阻尼脉冲时滞微分方程解的振动准则

Oscillation Criteria of Second-Order Nonlinear Impulsive Delay Differential Equations with Damping
原文传递
导出
摘要 利用了Lakshmikantham等人建立的脉冲微分不等式讨论了一类二阶非线性脉冲微分方程解的振动性质,获得了此类方程振动所应具备的充分条件,同时改进了一些已知的结果,最后用一个具体的例子说明了是否带有脉冲对微分方程的振动性有很大的影响. This paper discussed the oscillation of second order nonlinear differential equations with impulses by using impulsive differential inequalities established by Lakshmikantham et al. Sufficient conditions for all solutions of the equation to be oscillated were obtainedour work generalizes some known results. Finally an example was presented to explain the key role of impulses in generating oscillatory.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第17期210-214,共5页 Mathematics in Practice and Theory
基金 山东省教育厅科研发展计划项目(J07WH01)
关键词 二阶 非线性 脉冲微分方程 振动性 second order nonlinear impulsive differential equations oscillation
  • 相关文献

参考文献3

  • 1Weng L Z, Chen Y S. Razumikhin type theorem for functional equations with impulses [J]. Dynamics of Continuous,Discrete and Impulsive Systems, 1999,6 : 389-400.
  • 2Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989.
  • 3Peng M S W T. Oscillations caused by impulses[J]. J Math Appl,2001,255:163-176.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部