摘要
研究了带常数收获率的Michaelis-Menten型捕食-食饵模型。首先利用特征值理论得到常数平衡解的稳定性,然后在一维情况下利用局部分歧理论得出了非常数正解的存在性,最后利用全局分歧理论得到由(d(j)2,(u0,v0))产生的局部分歧可以延拓成整体分歧。
This paper discusses Michaelis-Menten-type predator-prey model with constant harvest.The paper begins with the investigation into the stability of constant steady-state solution by means of eigenvalue theory,proceeds the development of existence of positive solution through the local bifurcation theory in the one case,and ends with the use of global bifurcation theory to conclude that the local bifurcation at(d2^(j),(u0,v0)) can be extended to global bifurcation.
出处
《黑龙江科技学院学报》
CAS
2009年第4期314-317,共4页
Journal of Heilongjiang Institute of Science and Technology
基金
国家自然科学基金资助项目(10571115)