摘要
文中主要考虑一类无穷时滞的中立型脉冲泛函微分方程的温和解的存在唯一性,将其转化为积分方程并用Banach压缩映射原理证明温和解的存在性,然后,再考虑温和解的唯一性和解对初值的连续依赖性。
This paper is concerned with existence and uniqueness of solution for impulsive neutral functional differential equations of first order and densely definition.The paper introduces transformation of them into integral equations and the use of Banach contraction mapping theorem to prove the existence of the mild solution.It follows that the uniqueness of mild solution and the continuous dependence on initial value are considered.
出处
《黑龙江科技学院学报》
CAS
2009年第4期318-320,共3页
Journal of Heilongjiang Institute of Science and Technology
关键词
脉冲微分方程
发展系统
中立型微分方程
温和解
impulsive differential equation
evolution systems
neutral differential equations
mild solutions