期刊文献+

考虑热电耦合效应的缓冲器插入功耗优化

Power Optimization by Repeater Insertion with Thermal-Electric Coupling Effects
下载PDF
导出
摘要 为了改善芯片的功耗和温度特性,提出了一种缓冲器插入功耗优化方法.该方法基于延时、功耗和温度三者之间的热电耦合效应,给出了相应的延时、功耗和热模型;通过在允许的范围内牺牲部分延时来优化功耗,并在优化过程兼顾温度对延时和功耗的影响以及互连电感效应对延时的影响,利用Matlab软件求得最佳优化结果.采用该方法针对65nm和45nm工艺节点的缓冲器插入进行分析和验证的结果表明了其有效性.文中同时指出忽略互连电感效应会低估芯片的优化稳态功耗和温度. To improve the power and temperature characteristics of IC, a power optimization method by repeater insertion is presented in this paper. It is based on the electro-thermal coupling among power, delay and temperature, includes delay model, power model and thermal model, and makes power consumption reduced by allowing a small delay penalty. The proposed method contains temperature impacts on delay and power, and takes inductance effect into consideration. The optimized results are gained by using Matlab software. Simulations for repeater insertion under 65 nm and 45 nm technology are carried out and the results show that the chip temperature and power optimized by the proposed method are decreased dramatically. In addition, this paper points out that absence of inductance effect leads to underestimate optimal temperature and power.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第9期1264-1269,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60606006) 国家杰出青年科学基金(60725415) 重点实验室基金(9140C030102060C0303)
关键词 延时 功耗 缓冲器插入 热电耦合 电感 delay power repeater insertion thermal-electric coupling inductance
  • 相关文献

参考文献21

  • 1Cong J. An interconnect-centric design flow for nanorneter technologies [C] //Proceedings of the IEEE, 2001, 89 (4) : 505-528.
  • 2Sylvester D, Keutzer K. A global wiring paradigm for deep submicron design[J]. IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, 2000, 19 (2): 242-252.
  • 3Banerjee K, Mehrotra A. A power -optimal repeater insertion methodology for global interconnects in nanometer designs [J]. IEEE Transactions on Electron Devices, 2002, 49(11) : 2001-2007.
  • 4Kapur P, Chandra G, Saraswat K C. Power estimation in global interconnects and its reduetion using a novel repeater optimization methodology [C] //Proceedings of the 39th Design Automation Conference, New Orleans, 2002: 461- 466.
  • 5Liu Xun, Peng Y T, Papaefthymiou M C. Practical repeater insertion for low power: what repeater library do we need? [C]//Proceedings of the 41st Design Automation Conference, San Diego, 2004:30-35.
  • 6Wason V, Banerjee K. A probabilistic framework for power-optimal repeater insertion in global interconnects under parameter variations [C] //Proceedings of the International Symposium on Low-Power Electronics and Design, San Diego, 2005:131-136.
  • 7Banerjee K, Lin S C, Keshavarzi A, et al. A self consistent junction temperature estimation methodology for nanometer scale ICs with implications for performance and thermal management [C] //Proceedings of International Electron Device Meeting, Washington D C, 2003.. 887-890.
  • 8He L, Liao W P, Stan M R. System level leakage reduction considering the interdependence of temperature and leakage [C] //Proceedings of the 41st Design Automation Conference, San Diego, 2004:12-17.
  • 9Huang W, Humenay E, Skadron K, et al. The need for a full-chip and package thermal model for thermally optimized IC designs [C] //Proceedings of the International Symposium on Low-Power Electronics Design, San Diego, 2005: 245- 250.
  • 10Ku J C, Ismail Y. Thermal-aware methodology for repeater insertion in low-power VLSI circuits [J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2007, 15 (8) : 963-970.

二级参考文献33

  • 1Oh S Y, Chang K J. 2001 needs for multi-level interconnect technology[J]. IEEE Circuits and Devices, 1995, 11(1): 16~21.
  • 2Frye R C, Chen H Z. Optimal self-damped lossy transmission line interconnect for multichip modules [J]. IEEE Transactions on Circuits Systems Ⅱ, 1992, 39(11): 765~771.
  • 3Zhao M, Panda R, Sapatnekar S, et al. Hierarchical analysis of power distribution network [A]. In: Proceedings of Design Automation Conference, Los Angeles, 2000. 150~ 155.
  • 4Cho D S, Lee K H, Jang G J, et al. Efficient modeling techniques for IR drop analysis in ASIC designs [A]. In:Proceedings of IEEE International ASIC/SOC Conference,Washington D C, 1999. 64~68.
  • 5Hu J L, Chan C H, Sarkar T K. Generation of broadband response for the ground bounce [A]. In: Proceedings of IEEE Conference on Electrical Performance of Electronic Packaging,Scottsdale, 2000. 47~50.
  • 6Lienig J, Jerke G, Adler T. Electromigration avoidance in analog circuits: Two methodologies for current-driven routing [A]. In: Proceedings of Design Automation Conference,Bangalore, 2002. 372~378.
  • 7Mi W, Brews J R. Guidelines governing the need for low impedance drivers for MCM's [J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology,1993, 16(2): 152~156.
  • 8Cappuccino G, Cocorullo G. Time-domain model for power dissipation of CMOS buffers driving lossy lines [J ]. Electronics Letters, 1999, 35(12): 959~960.
  • 9Shin Y, Sakurai T. Power distribution analysis of VLSI interconnects using model order reduction [J]. IEEE Transactions on Computer-Aided Design, 2002, 21 (6): 739~745.
  • 10Heydari Para, Abbaspour Soroush, Pedram Massoud. A comprehensive study of energy dissipation in lossy transmission lines driven by CMOS inverter [A]. In: Proceedings of Custom Integrated Circuits Conference, Orlando, 2002. 517~520.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部