期刊文献+

图像分类的随机半监督采样方法 被引量:3

Image Classification:A Random Semi-Supervised Sampling Approach
下载PDF
导出
摘要 为更好地利用大量未标注图像样本信息来提高分类器性能,提出一种半监督学习的图像分类算法——随机半监督采样(RSSS).该算法采用迭代随机采样方法,每次采样中通过谱聚类估计未标注样本的类别值,使用SVM进行模型学习,逐步优化模型;同时,使用图像的局部空间直方图特征可以有效地结合图像的统计和空间信息,以提高分类准确度.实验结果表明,RSSS算法可以充分利用未标注样本信息提高分类器的性能,并且可以有效地消除几何变换带来的影响. An image classification method is presented based on random semi-supervised sampling (RSSS). RSSS is an iterative algorithm in which the following two steps alternate till convergence: (1)random semi-supervised sampling; (2)semi-supervised spectral clustering for sample labeling and SVM for model training. RSSS uses local spatial histogram as the image feature and it can combine the image spatial relations with statistical information together. The experiments show that the proposed method can use unlabeled images to improve image classification performance and is not sensitive to image geometrical transform.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第9期1333-1338,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2008AA10Z224) 国家自然科学基金(60872040 60873147) 教育部博士点基金(20060183042) 吉林省科技发展计划基金(20060527)
关键词 图像分类 局部特征 随机半监督采样 谱聚类 SVM image classification local features random semi-supervised sampling spectral clustering SVM
  • 相关文献

参考文献2

二级参考文献26

  • 1Csurka G,Dance C,Fan L,Willamowski J,Bray C.Visual categorization with bags of keypoints//Proceedings of the 2004 ECCV International Workshop on Statistical Learning in Computer Vision.Prague,Czech Republic,2004:59-74
  • 2Sivic J,Russell B,Efros A,Zisserman A,Freeman W.Discovering objects and their localization in images//Proceedings of the 10th International Conference on Computer Vision(ICCV'05).Beijing,China,2005,1:370-377
  • 3Winn J,Criminisi A,Minks T.Object categorization by learned universal visual dictionary//Proceedings of the 10th International Conference on Computer Vision (ICCV' 05).Beijing,China,2005,2:1800-1807
  • 4Li Fei-Fei,Fergus R,Perona P.One-shot learning of object categories.IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611
  • 5Burl M,Weber M,Perona P.A probabilistic approach to object recognition using local photometry and global geometry//Proceedings of the 5th European Conference on Computer Vision.Freiburg,Germany,1998,2:628-641
  • 6Weber M,Welling M,Perona P.Unsupervised learning of models for recognition//Proceedings of the 6th European Conference on Computer Vision.Dublin,Ireland,2000,1:18-32
  • 7Fergus R,Perona P,Zisserman A.Object class recognition by unsupervised scale-invariant learning//Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03).Madison,Wisconsin,USA,2003,2:264-271
  • 8Agarwal S,Roth D.Learning a sparse representation for object detection//Proceedings of the 7th European Conference on Computer Vision.Copenhagen,Denmark,2002,4:113-130
  • 9Felzenszwalb P,Huttenlocher D.Pictorial structures for object recognition.International Journal of Computer Vision,2005,61(1):55-79
  • 10Crandall D,Felzenszwalb P,Huttenlocher D.Spatial priors for part-based recognition using statistical models//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).San Diego,California,USA,2005,1:10-17

共引文献18

同被引文献32

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2Oliva A, Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope [J]. International Journal on Computer Vision, 2001, 42(3) : 145- 175.
  • 3Yang J, Jiang Y G, Hauptmann A G, et al. Evaluating bag-of-visual-words representations in scene classification [C] //Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval. New York: ACM Press, 2007:197-206.
  • 4Dumais S T, Furnas G W, Landauer T K, etal. Using latent semantic analysis to improve access to textual information [C] //Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1988: 281-285.
  • 5Sindhwani V, Keerthi S S. Large scale semi-supervised linear SVMs [C] //Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2006: 477- 484.
  • 6Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89(1): 31-71.
  • 7Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple-instance learning [C]//Proceedings of the 15th Neural Information Processing Systems. Cambridge: MIT Press, 2003:561-568.
  • 8Gehler P V, Chapelle O. Deterministic annealing for multiple-instance learning [C] //Proceedings of the 11th International Conference on Artificial Intelligence and Statistics. San Juan: Microtome, 2007:123-130.
  • 9Gartner T, Flach P A, Kowalczyk A, et al. Multi-instance kernels [C] //Proceedings of the 19th International Conference on Machine Learning. San Francisco: Morgan Kaufmann, 2002 : 179-186.
  • 10Kwok J T, Cheung P M. Marginalized multi-instance kernels [C]//Proceedings of the 20th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2007:901-906.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部