期刊文献+

圆锥裁剪BLOB的视频目标检测方法

A Segmentation Method of Objects Based on Truncated Cone BLOB
下载PDF
导出
摘要 真实场景的视频目标检测需要消除阴影、反射和鬼影等噪声的影响,以检测出运动目标和静止目标.为了实现系统性的视频目标检测,提出一种自适应圆锥裁剪联通块(TC-BLOB)检测方法.基于BLOB知识,将3D颜色空间变换为"夹角-模差"2D空间后,定义一套圆锥裁剪规则划分出阴影BLOB和反射BLOB;再以一种持久化记忆PM方法判别出鬼影BLOB;最后改进双背景模型检测出静止目标和运动目标.采用不同环境视频进行实验的结果表明,文中方法是有效的,并有独立于后续跟踪的优点. Segmentation of objects in real-world scenes needs to detect and eliminate noise such as shadow, reflection and ghost. The detection of static visual object is also crucial for robust segmentation and dynamic background updating. To realize systemic object segmentation for real-world scenes, the paper proposed a new adaptive method based on truncated cone BLOB. Firstly, based on BLOB knowledge, the method transferred 3D color space to 2D angle mode color space and defined a set of rules of truncated cone to detect shadow BLOB and reflection BLOB. Secondly, the method removed the ghost BLOB from the moving visual BLOB by calculating permanence memory. Finally, the method used a long-time and short time dual-background model to detect static visual object. The experimental results on different scenes demonstrate the effectiveness of the proposed method. In addition, the proposed method can be used for different tracking techniques.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第9期1344-1351,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家"八六三"高技术研究发展计划(2006AA12A104)
关键词 TC—BLOB目标检测 持久化记忆 鬼影检测 静止目标检测 object detection based on truncated cone BLOB permanence memory ghost detection static visual object detection
  • 相关文献

参考文献12

  • 1Jodoin P M, Mignotte M, Konrad J. Statistical background subtraction using spatial cues [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17 (12) : 1758-1763.
  • 2Jadon R S, Chaudhury S, Biswas K K. A fuzzy theoretic approach for video segmentation using syntactic features [J]. Pattern Recognition Letters, 2001, 22(13) : 1359-1369.
  • 3Carmona E J, Martinez Cantos J, Mira J. A new video segmentation method of moving objects based on blob-level knowledge[J]. Pattern Recognition Letters, 2008, 29 (3) :272-285.
  • 4Kim E Y, Park S H. Automatic video segmentation using genetic algorithms [J]. Pattern Recognition Letters, 2006, 27(11): 1252-1265.
  • 5Cucchiara R, Grana C, Piccardi M, et al. Statistic and knowledge based moving object detection in traffic scenes [C]//Proceedings of IEEE Conference on Intelligent Transportation Systems, Dearborn, 2000: 27-32.
  • 6Mahadevan V, Vasconcelos N. Background subtraction in highly dynamic scenes [C] //Proceedings of the 26tb IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008:1-6.
  • 7Dedeoglu Y. Moving object detection, tracking and classification for smart video surveillance [D]. Ankara: Bilkent University, 2004.
  • 8Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10) : 1337-134,2.
  • 9Xu D, Li X L, Liu Z K, etal. Cast shadow detection in video segmentation [J]. Pattern Recognition Letters, 2005, 26 (1): 91-99.
  • 10魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54

二级参考文献14

  • 1Sasa G, Loncaric S. Spatio-temporal image segmentation using optical flow and clustering algorithm [ A ]. First Int' 1 Workshop on Image and Signal Processing and Analysis[ C]. Pula,Croatia, 2000.63 - 68.
  • 2Smith S M,Brady J M. ASSET-2: real-time motion segmentation and shape tracking[A]. Proceedings of the IEEE International Conference on Computer Vision [ C ]. NJ, USA: IEEE,1995. 814 - 820.
  • 3Thompson W B,Pong T C. Detecting moving object[J] .Int J Comp Vision, 1990,4( 1 ) : 39 - 57.
  • 4Jong Bae Kim,Hang Joon Kim. Efficient region-based motion segmentation for a video monitoring system [ J ]. Pattern Recognition Letters,2003,24( 1 - 3) : 113 - 128.
  • 5Needham C J, Boyle R D. Tracking multiple sports players through occlusion, congestion and scale[ A]. British Machine Vision Conference [ C ]. Manchester, UK: School of Computing,University of Leeds,2001.1:93 - 102.
  • 6Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[ A]. European Conference on Computer Vision[ C]. Dublin, Ireland,2000.751 - 767.
  • 7Xiaobo Li, Zhi-Qiang Liu, Ka-Ming Leung. Detection of vehicles from traffic scenes using fuzzy integrals [J]. Pattern Recognition, 2002,35 (4) : 967 - 980.
  • 8Vieren C, Cabestaing F, Postaire J. Catching moving objects with snakes for motion tracking[J]. Pattern Recognition Letters, 1995,16(7) :679 - 685.
  • 9B Horn, B Schunck. Determining optical flow [ J ]. Aaificial Intelligence, 1981,17 : 185 - 203.
  • 10Kittler J, Illingworth J. Minimum error thresholding [ J ]. Pat-tern Recognition, 1986,19( 1 ) :41 - 47.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部